Solution of EECS 300 Test 4 F08

- 1. In the circuit below, find the numerical value of the current I_{χ} due to
 - (a) The 3A source acting alone.

The 3A current divides between the 3Ω resistor and the equivalent resistance in the other branch which is $4\Omega + 3\Omega \parallel 6\Omega$ or 6Ω . Therefore the current through the 4Ω resistor is $I_4 = 3A \frac{3\Omega}{3\Omega + 6\Omega} = 1A$. This current returns to the current source through the bottom conductor, flowing in the direction opposite that of the arrow for I_x . Therefore I_x for 3A acting alone, = -1A.

(b) The 20V source acting alone.

The total current flowing out of the positive terminal of the 20V source is

$$I_{20} = \frac{20 \text{ V}}{7\Omega || 3\Omega + 6\Omega} = \frac{20 \text{ V}}{8.1\Omega} = 2.47 \text{ A}$$

That current then divides between the two paths $4\Omega + 3\Omega$ and 3Ω . The fraction that flows through the $4\Omega + 3\Omega$ path is the same as I_x . That is

 $I_x = 2.47 \text{ A} \frac{3\Omega}{3\Omega + 7\Omega} = 0.741 \text{ A}$. Therefore, for the 20V source acting alone, $I_x = 0.741 \text{ A}$.

2. Find the numerical value of the Thevenin equivalent voltage V_{TH} and the Thevenin equivalent resistance R_{TH} for the circuit below.

No current flows through the dependent voltage source. Therefore I_x flows through both the 9 Ω and 3 Ω resistors, making them effectively in series. So $I_x = \frac{10 \text{ V}}{12\Omega} = 0.833 \text{ A}$. The voltage across the 3 Ω resistor is 2.5 V. The voltage of the dependent voltage source is 3.333V. Therefore the Thevenin equivalent voltage V_{TH} is 5.833V.

To find the Thevenin equivalent resistance, apply a test 1V source at the *a*-*b* terminals with the 10V source set to zero.

$$3I_{v} + 4I_{v} = 1 \Longrightarrow I_{v} = 0.143A$$

Then the voltage across the 9Ω and 3Ω resistors in parallel is 0.4286 V and the current through the 9Ω resistor is 0.0476A. So the current through the dependent source is 0.191A and the Thevenin equivalent resistance is

3. Find the numerical value of the resistance between *a* and *b* in the circuit below.

Through a delta-wye conversion we can convert this circuit to

From this point on parallel and series combinations can be used to find the overall equivalent resistance.

$$R_{ab} = \left(10\Omega + 3.333\Omega\right) \| \left(10\Omega + 3.333\Omega\right) + 3.333\Omega = 10\Omega \,.$$

Solution of EECS 300 Test 4 F08

- 1. In the circuit below, find the numerical value of the current I_{χ} due to
 - (a) The 5A source acting alone.

The 5A current divides between the 3Ω resistor and the equivalent resistance in the other branch which is $4\Omega + 3\Omega \parallel 6\Omega$ or 6Ω . Therefore the current through the 4Ω resistor is $I_4 = 5A \frac{3\Omega}{3\Omega + 6\Omega} = 1.667A$. This current returns to the current source through the bottom conductor, flowing in the direction opposite that of the arrow for I_x . Therefore I_x for 5A acting alone, = -1.667A.

(b) The 10V source acting alone.

The total current flowing out of the positive terminal of the 10V source is

$$I_{20} = \frac{10 \,\text{V}}{7\Omega \,\|\, 3\Omega + 6\Omega} = \frac{10 \,\text{V}}{8.1\Omega} = 1.24 \,\text{A}$$

That current then divides between the two paths $4\Omega + 3\Omega$ and 3Ω . The fraction that flows through the $4\Omega + 3\Omega$ path is the same as I_x . That is

$$I_x = 1.24 \text{ A} \frac{3\Omega}{3\Omega + 7\Omega} = 0.371 \text{ A}$$
. Therefore, for the 20V source acting alone, $I_x = 0.371 \text{ A}$.

2. Find the numerical value of the Thevenin equivalent voltage V_{TH} and the Thevenin equivalent resistance R_{TH} for the circuit below.

No current flows through the dependent voltage source. Therefore I_x flows through both the 9 Ω and 3 Ω resistors, making them effectively in series. So $I_x = \frac{10 \text{ V}}{12\Omega} = 0.833 \text{ A}$. The voltage across the 3 Ω resistor is 2.5 V. The voltage of the dependent voltage source is 1.667V. Therefore the Thevenin equivalent voltage V_{TH} is 4.167V.

To find the Thevenin equivalent resistance, apply a test 1V source at the *a-b* terminals with the 10V source set to zero.

$$3I_{y} + 2I_{y} = 1 \Longrightarrow I_{y} = 0.2 \text{ A}$$

Then the voltage across the 9Ω and 3Ω resistors in parallel is 0.6 V and the current through the 9Ω resistor is 0.0667A. So the current through the dependent source is 0.2667A and the Thevenin equivalent resistance is

3. Find the numerical value of the resistance between *a* and *b* in the circuit below.

Through a delta-wye conversion we can convert this circuit to

From this point on parallel and series combinations can be used to find the overall equivalent resistance.

$$R_{ab} = \left(4\Omega + 1.333\Omega\right) \| \left(4\Omega + 1.333\Omega\right) + 1.333\Omega = 4\Omega.$$