Solution of ECE 300 Test 7 S12

1. Fill in the blanks with correct numbers.

At $t = 0^-$, the switch is open, the capacitor is equivalent to an open circuit and all the I_s current flows through the three resistors counterclockwise. The voltage across the capacitor is $i_2 R_2 = -I_s R_2$ and does not change instantaneously when the switch is closed. So at $t = 0^+$ the switch is closed and the capacitor voltage and the current i_2 stay the same. The resistor R_1 is now in parallel with the capacitor so $v_1 = -v_c$ and $i_1 = v_1/R_1$. The voltage across R_3 stays the same because it is in series with a current source that is constant. The time constant is $\tau = R_{eq}C$ where $R_{eq} = R_1 \parallel R_2$.

$$i_{1}(0^{-}) = -2 \text{ mA} \qquad i_{2}(0^{-}) = -2 \text{ mA} \qquad i_{c}(0^{-}) = 0 \text{ mA}$$
$$v_{1}(0^{-}) = -4.6 \text{ V} \qquad v_{c}(0^{-}) = -3.6 \text{ V} \qquad v_{3}(0^{-}) = 1.8 \text{ V}$$
$$i_{1}(0^{+}) = 1.5652 \text{ mA} \qquad i_{2}(0^{+}) = -2 \text{ mA} \qquad i_{c}(0^{+}) = 3.5652 \text{ mA}$$
$$v_{1}(0^{+}) = 3.6 \text{ V} \qquad v_{c}(0^{+}) = -3.6 \text{ V} \qquad v_{3}(0^{+}) = 1.8 \text{ V}$$

For t > 0, the time constant τ is 22.2 ms.

2. Fill in the blanks with correct numbers.

$$\begin{array}{c} i_{1}(0^{-}) = \underline{\qquad} & mA \quad i_{2}(0^{-}) = \underline{\qquad} & mA \quad i_{L}(0^{-}) = \underline{\qquad} & mA \\ v_{1}(0^{-}) = \underline{\qquad} & V \quad v_{L}(0^{-}) = \underline{\qquad} & V \quad v_{ds}(0^{-}) = \underline{\qquad} & V \\ i_{1}(0^{+}) = \underline{\qquad} & mA \quad i_{2}(0^{+}) = \underline{\qquad} & mA \quad i_{L}(0^{+}) = \underline{\qquad} & mA \\ v_{1}(0^{+}) = \underline{\qquad} & V \quad v_{L}(0^{+}) = \underline{\qquad} & V \quad v_{ds}(0^{+}) = \underline{\qquad} & V \\ \end{array}$$

At $t = 0^-$, the switch is closed, the inductor is equivalent to a short circuit so the voltage across it is zero, making the voltage across R_2 zero, making the current i_2 zero, making the current ki_2 also zero. So $v_1 = V_s$ and the current through both R_1 and the inductor is V_s / R_1 . At $t = 0^+$, $i_L + i_2 = ki_2$ (because the switch is now open) therefore $i_2 = \frac{i_L}{k-1}$. The currents ki_2 and i_1 are the same and $v_1 = i_1 R_1$. Also $v_L = i_2 R_2$ and $v_{ds} = v_L + v_1$. For t > 0, the equivalent resistance in parallel with the inductor is the Thevenin equivalent resistance of the network formed by the two resistors and the dependent source. Applying a 1 V test source at the load terminals of that network the current i_s flowing into the network is set by $i_2 = ki_2 + i_s$ and $i_2 = 1/R_2$. Solving, $i_s = (1-k)/R_2$ and $R_{eq} = R_2 / (1-k)$ and $\tau = L / R_{eq} = (1-k)L / R_2$.

$$i_{1}(0^{-}) = 2.2642 \text{ mA} \qquad i_{2}(0^{-}) = 0 \text{ mA} \qquad i_{L}(0^{-}) = 2.2642 \text{ mA}$$
$$v_{1}(0^{-}) = 12 \text{ V} \qquad v_{L}(0^{-}) = 0 \text{ V} \qquad v_{ds}(0^{-}) = 12 \text{ V}$$
$$i_{1}(0^{+}) = -3.3962 \text{ mA} \qquad i_{2}(0^{+}) = -5.6604 \text{ mA} \qquad i_{L}(0^{+}) = 2.2642 \text{ mA}$$
$$v_{1}(0^{+}) = -18 \text{ V} \qquad v_{L}(0^{+}) = -49.8115 \text{ V} \qquad v_{ds}(0^{+}) = -67.8115 \text{ V}$$

For t > 0, the time constant τ is 1.091 μ s.

Solution of ECE 300 Test 7 S12

1. Fill in the blanks with correct numbers.

At $t = 0^-$, the switch is open, the capacitor is equivalent to an open circuit and all the I_s current flows through the three resistors counterclockwise. The voltage across the capacitor is $i_2 R_2 = -I_s R_2$ and does not change instantaneously when the switch is closed. So at $t = 0^+$ the switch is closed and the capacitor voltage and the current i_2 stay the same. The resistor R_1 is now in parallel with the capacitor so $v_1 = -v_c$ and $i_1 = v_1/R_1$. The voltage across R_3 stays the same because it is in series with a current source that is constant. The time constant is $\tau = R_{eq}C$ where $R_{eq} = R_1 \parallel R_2$.

$$i_{1}(0^{-}) = -1 \text{ mA} \qquad i_{2}(0^{-}) = -1 \text{ mA} \qquad i_{C}(0^{-}) = 0 \text{ mA}$$
$$v_{1}(0^{-}) = -2.3 \text{ V} \qquad v_{C}(0^{-}) = -1.8 \text{ V} \qquad v_{3}(0^{-}) = 0.9 \text{ V}$$
$$i_{1}(0^{+}) = 0.7826 \text{ mA} \qquad i_{2}(0^{+}) = -1 \text{ mA} \qquad i_{C}(0^{+}) = 1.7826 \text{ mA}$$
$$v_{1}(0^{+}) = 1.8 \text{ V} \qquad v_{C}(0^{+}) = -1.8 \text{ V} \qquad v_{3}(0^{+}) = 0.9 \text{ V}$$

For t > 0, the time constant τ is 47.43 ms.

2. Fill in the blanks with correct numbers.

$$\begin{array}{c} i_{1}(0^{-}) = \underline{\qquad} & mA \quad i_{2}(0^{-}) = \underline{\qquad} & mA \quad i_{L}(0^{-}) = \underline{\qquad} & mA \\ v_{1}(0^{-}) = \underline{\qquad} & V \quad v_{L}(0^{-}) = \underline{\qquad} & V \quad v_{ds}(0^{-}) = \underline{\qquad} & V \\ i_{1}(0^{+}) = \underline{\qquad} & mA \quad i_{2}(0^{+}) = \underline{\qquad} & mA \quad i_{L}(0^{+}) = \underline{\qquad} & mA \\ v_{1}(0^{+}) = \underline{\qquad} & V \quad v_{L}(0^{+}) = \underline{\qquad} & V \quad v_{ds}(0^{+}) = \underline{\qquad} & V \\ \end{array}$$

At $t = 0^-$, the switch is closed, the inductor is equivalent to a short circuit so the voltage across it is zero, making the voltage across R_2 zero, making the current i_2 zero, making the current ki_2 also zero. So $v_1 = V_s$ and the current through both R_1 and the inductor is V_s / R_1 . At $t = 0^+$, $i_L + i_2 = ki_2$ (because the switch is now open) therefore $i_2 = \frac{i_L}{k-1}$. The currents ki_2 and i_1 are the same and $v_1 = i_1 R_1$. Also $v_L = i_2 R_2$ and $v_{ds} = v_L + v_1$. For t > 0, the equivalent resistance in parallel with the inductor is the Thevenin equivalent resistance of the network formed by the two resistors and the dependent source. Applying a 1 V test source at the load terminals of that network the current i_s flowing into the network is set by $i_2 = ki_2 + i_s$ and $i_2 = 1/R_2$. Solving, $i_s = (1-k)/R_2$ and $R_{eq} = R_2 / (1-k)$ and $\tau = L / R_{eq} = (1-k)L / R_2$.

$$i_{1}(0^{-}) = 4.5284 \text{ mA} \qquad i_{2}(0^{-}) = 0 \text{ mA} \qquad i_{L}(0^{-}) = 4.5284 \text{ mA}$$
$$v_{1}(0^{-}) = 24 \text{ V} \qquad v_{L}(0^{-}) = 0 \text{ V} \qquad v_{ds}(0^{-}) = 24 \text{ V}$$
$$i_{1}(0^{+}) = -6.7924 \text{ mA} \qquad i_{2}(0^{+}) = -11.3208 \text{ mA} \qquad i_{L}(0^{+}) = 4.5284 \text{ mA}$$
$$v_{1}(0^{+}) = -36 \text{ V} \qquad v_{L}(0^{+}) = -99.623 \text{ V} \qquad v_{ds}(0^{+}) = -135.623 \text{ V}$$

For t > 0, the time constant τ is 0.5455 μ s.

Solution of ECE 300 Test 7 S12

1. Fill in the blanks with correct numbers.

At $t = 0^-$, the switch is open, the capacitor is equivalent to an open circuit and all the I_s current flows through the three resistors counterclockwise. The voltage across the capacitor is $i_2 R_2 = -I_s R_2$ and does not change instantaneously when the switch is closed. So at $t = 0^+$ the switch is closed and the capacitor voltage and the current i_2 stay the same. The resistor R_1 is now in parallel with the capacitor so $v_1 = -v_c$ and $i_1 = v_1/R_1$. The voltage across R_3 stays the same because it is in series with a current source that is constant. The time constant is $\tau = R_{eq}C$ where $R_{eq} = R_1 \parallel R_2$.

$$i_{1}(0^{-}) = -4 \text{ mA} \qquad i_{2}(0^{-}) = -4 \text{ mA} \qquad i_{C}(0^{-}) = 0 \text{ mA}$$
$$v_{1}(0^{-}) = -9.2 \text{ V} \qquad v_{C}(0^{-}) = -7.2 \text{ V} \qquad v_{3}(0^{-}) = 3.6 \text{ V}$$
$$i_{1}(0^{+}) = 3.1304 \text{ mA} \qquad i_{2}(0^{+}) = -4 \text{ mA} \qquad i_{C}(0^{+}) = 7.1304 \text{ mA}$$
$$v_{1}(0^{+}) = 7.2 \text{ V} \qquad v_{C}(0^{+}) = -7.2 \text{ V} \qquad v_{3}(0^{+}) = 3.6 \text{ V}$$

For t > 0, the time constant τ is 44.4 ms.

2. Fill in the blanks with correct numbers.

$$\begin{array}{c} i_{1}(0^{-}) = \underline{\qquad} & mA \quad i_{2}(0^{-}) = \underline{\qquad} & mA \quad i_{L}(0^{-}) = \underline{\qquad} & mA \\ v_{1}(0^{-}) = \underline{\qquad} & V \quad v_{L}(0^{-}) = \underline{\qquad} & V \quad v_{ds}(0^{-}) = \underline{\qquad} & V \\ i_{1}(0^{+}) = \underline{\qquad} & mA \quad i_{2}(0^{+}) = \underline{\qquad} & mA \quad i_{L}(0^{+}) = \underline{\qquad} & mA \\ v_{1}(0^{+}) = \underline{\qquad} & V \quad v_{L}(0^{+}) = \underline{\qquad} & V \quad v_{ds}(0^{+}) = \underline{\qquad} & V \\ \end{array}$$

At $t = 0^-$, the switch is closed, the inductor is equivalent to a short circuit so the voltage across it is zero, making the voltage across R_2 zero, making the current i_2 zero, making the current ki_2 also zero. So $v_1 = V_s$ and the current through both R_1 and the inductor is V_s / R_1 . At $t = 0^+$, $i_L + i_2 = ki_2$ (because the switch is now open) therefore $i_2 = \frac{i_L}{k-1}$. The currents ki_2 and i_1 are the same and $v_1 = i_1 R_1$. Also $v_L = i_2 R_2$ and $v_{ds} = v_L + v_1$. For t > 0, the equivalent resistance in parallel with the inductor is the Thevenin equivalent resistance of the network formed by the two resistors and the dependent source. Applying a 1 V test source at the load terminals of that network the current i_s flowing into the network is set by $i_2 = ki_2 + i_s$ and $i_2 = 1/R_2$. Solving, $i_s = (1-k)/R_2$ and $R_{eq} = R_2 / (1-k)$ and $\tau = L / R_{eq} = (1-k)L / R_2$.

$$i_{1}(0^{-}) = 1.1321 \text{ mA} \qquad i_{2}(0^{-}) = 0 \text{ mA} \qquad i_{L}(0^{-}) = 1.1321 \text{ mA}$$
$$v_{1}(0^{-}) = 6 \text{ V} \qquad v_{L}(0^{-}) = 0 \text{ V} \qquad v_{ds}(0^{-}) = 6 \text{ V}$$
$$i_{1}(0^{+}) = -1.6981 \text{ mA} \qquad i_{2}(0^{+}) = -2.8302 \text{ mA} \qquad i_{L}(0^{+}) = 1.1321 \text{ mA}$$
$$v_{1}(0^{+}) = -9 \text{ V} \qquad v_{L}(0^{+}) = -24.4058 \text{ V} \qquad v_{ds}(0^{+}) = -33.9057 \text{ V}$$

For t > 0, the time constant τ is 2.182 μ s.