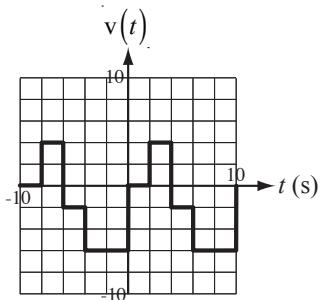


Solution of ECE 300 Test 12 S09

1. In a circuit there are a source absorbing complex power \mathbf{S}_s and three impedances absorbing complex powers \mathbf{S}_1 , \mathbf{S}_2 and \mathbf{S}_3 . Referring to the diagram below, find the numerical magnitude and angle of \mathbf{S}_3 .


$$\mathbf{S}_s + \mathbf{S}_1 + \mathbf{S}_2 + \mathbf{S}_3 = 0$$

$$-10 + j2 + 4 - j2 + 4 - j8 + \mathbf{S}_3 = -2 - j8 + \mathbf{S}_3 = 0 \Rightarrow \mathbf{S}_3 = 2 + j8 = 8.246 \angle 75.96^\circ$$

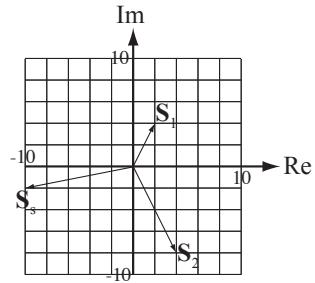
2. Below is a periodic waveform $v(t)$ of period 10 s. Find its numerical rms value.

$$V_{\text{rms}} = \sqrt{\frac{1}{10} \left(2 \times 0^2 + 2 \times 4^2 + 2 \times (-2)^2 + 2 \times (-46)^2 + 2 \times (-6)^2 \right)} = \sqrt{\frac{16 + 4 + 36 + 36}{5}} = 4.289 \text{ V}$$

3. An electrical load operating at 60 Hz consists of a 300Ω resistor, a 0.5H inductor and a $10\mu\text{F}$ capacitor all connected in parallel. What is the numerical power factor of this load and is it leading or lagging?

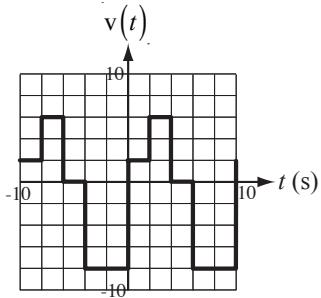
$$Z_L = \frac{1}{1/300 + 1/(j377 \times 0.5) + j377 \times 10^{-5}} = \frac{1}{0.00333 - j0.00531 + j0.00377} = \frac{1}{0.00333 - j0.00154}$$

$$Z_L = \frac{1}{0.00333 - j0.00154} = \frac{1}{0.00367 \angle -24.73^\circ} = 272.49 \angle 24.73^\circ$$


$$\text{PF} = \cos(24.73^\circ) = 0.9083 \quad \text{lagging}$$

Solution of ECE 300 Test 12 S09

1. In a circuit there are a source absorbing complex power \mathbf{S}_s and three impedances absorbing complex powers \mathbf{S}_1 , \mathbf{S}_2 and \mathbf{S}_3 . Referring to the diagram below, find the numerical magnitude and angle of \mathbf{S}_3 .


$$\mathbf{S}_s + \mathbf{S}_1 + \mathbf{S}_2 + \mathbf{S}_3 = 0$$

$$-10 - j2 + 2 + j4 + 4 - j8 + \mathbf{S}_3 = -4 - j6 + \mathbf{S}_3 = 0 \Rightarrow \mathbf{S}_3 = 4 + j6 = 7.211 \angle 56.31^\circ$$

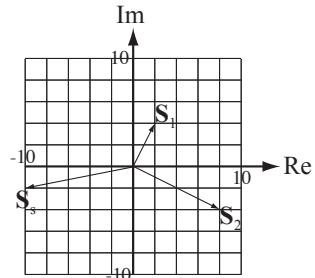
2. Below is a periodic waveform $v(t)$ of period 10 s. Find its numerical rms value.

$$V_{\text{rms}} = \sqrt{\frac{1}{10} \left(2 \times 2^2 + 2 \times 6^2 + 2 \times 0^2 + 2 \times (-8)^2 + 2 \times (-8)^2 \right)} = \sqrt{\frac{4 + 36 + 0 + 64 + 64}{5}} = 5.797 \text{ V}$$

3. An electrical load operating at 60 Hz consists of a 400Ω resistor, a 0.5H inductor and a $10\mu\text{F}$ capacitor all connected in parallel. What is the numerical power factor of this load and is it leading or lagging?

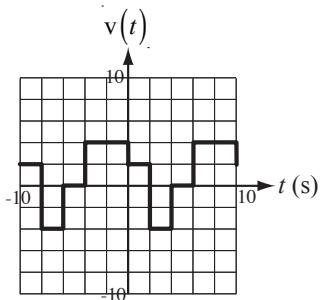
$$Z_L = \frac{1}{1/400 + 1/(j377 \times 0.5) + j377 \times 10^{-5}} = \frac{1}{0.00250 - j0.00531 + j0.00377} = \frac{1}{0.00250 - j0.00154}$$

$$Z_L = \frac{1}{0.00250 - j0.00154} = \frac{1}{0.00294 \angle -31.55^\circ} = 340.87 \angle 31.55^\circ$$


$$\text{PF} = \cos(31.55) = 0.8522 \text{ lagging}$$

Solution of ECE 300 Test 12 S09

1. In a circuit there are a source absorbing complex power \mathbf{S}_s and three impedances absorbing complex powers \mathbf{S}_1 , \mathbf{S}_2 and \mathbf{S}_3 . Referring to the diagram below, find the numerical magnitude and angle of \mathbf{S}_3 .


$$\mathbf{S}_s + \mathbf{S}_1 + \mathbf{S}_2 + \mathbf{S}_3 = 0$$

$$-10 - j2 + 2 + j4 + 8 - j4 + \mathbf{S}_3 = -j2 + \mathbf{S}_3 = 0 \Rightarrow \mathbf{S}_3 = j2 = 2\angle 90^\circ$$

2. Below is a periodic waveform $v(t)$ of period 10 s. Find its numerical rms value.

$$V_{\text{rms}} = \sqrt{\frac{1}{10} \left(2 \times 2^2 + 2 \times (-4)^2 + 2 \times 0^2 + 2 \times 4^2 + 2 \times 4^2 \right)} = \sqrt{\frac{4 + 16 + 16 + 16}{5}} = 3.225$$

3. An electrical load operating at 60 Hz consists of a 250Ω resistor, a 0.5H inductor and a $10\mu\text{F}$ capacitor all connected in parallel. What is the numerical power factor of this load and is it leading or lagging?

$$Z_L = \frac{1}{1/250 + 1/(j377 \times 0.5) + j377 \times 10^{-5}} = \frac{1}{0.004 - j0.00531 + j0.00377} = \frac{1}{0.004 - j0.00154}$$

$$Z_L = \frac{1}{0.004 - j0.00154} = \frac{1}{0.00428 \angle -21^\circ} = 233.40 \angle 21^\circ$$

$$\text{PF} = \cos(21^\circ) = 0.9336 \text{ lagging}$$