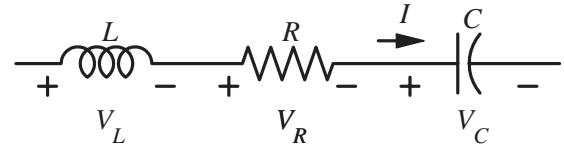


Solution of ECE 202 Test 3 S13

1. With reference to the partial circuit below,


- (a) Find the numerical average real power absorbed by the resistor. $P_R = \text{_____ W}$
- (b) The numerical impedance of the capacitor. $Z_C = \text{_____} \angle \text{_____}^\circ \Omega$
- (c) The numerical phasor voltage across the capacitor. $V_C = \text{_____} \angle \text{_____}^\circ \text{V}$
- (d) Find the numerical apparent power absorbed by the capacitor. $P_{C,App} = \text{_____ VA}$
- (e) The numerical impedance of the inductor. $Z_L = \text{_____} \angle \text{_____}^\circ \Omega$
- (f) The numerical phasor voltage across the inductor. $V_L = \text{_____} \angle \text{_____}^\circ \text{V}$
- (g) Find the numerical complex power absorbed by the inductor.

$$\mathbf{S}_L = \text{_____} \angle \text{_____}^\circ \text{VA}$$

- (h) Find the time-domain current. $i(t) = \text{_____ A}$
- (i) Find the time-domain voltage across the inductor. $v_L(t) = \text{_____ V}$
- (j) Find the numerical instantaneous power absorbed by the inductor at time $t = 1 \text{ ms}$.

$$p_L(1 \text{ ms}) = \text{_____ W}$$

$$I = 4 \angle 30^\circ \text{ A}, L = 20 \text{ mH}, R = 70 \Omega, C = 240 \mu\text{F}, \omega = 300 \text{ s}^{-1}$$

$$P_R = \frac{|I|^2}{2} R = \frac{4^2}{2} 70 = 560 \text{ W}$$

$$Z_C = \frac{1}{j\omega C} = \frac{1}{j300 \times 240 \times 10^{-6}} = 13.889 \angle -90^\circ \Omega$$

$$V_C = IZ_C = 4 \angle 30^\circ \times 13.889 \angle -90^\circ = 55.556 \angle -60^\circ \text{ V}$$

$$P_{C,App} = \frac{|V_C||I|}{2} = \frac{55.556 \times 4}{2} = 111.11 \text{ VA}$$

$$Z_L = j\omega L = j300 \times 0.02 = 6 \angle 90^\circ \Omega$$

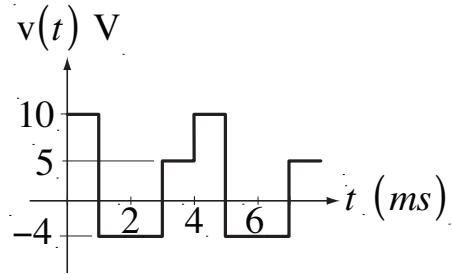
$$V_L = IZ_L = 4 \angle 30^\circ \times 6 \angle 90^\circ = 24 \angle 120^\circ \text{ V}$$

$$\mathbf{S}_L = \frac{V_L I_L^*}{2} = \frac{24 \angle 120^\circ \times 4 \angle -30^\circ}{2} = 48 \angle 90^\circ \text{ VA}$$

$$i(t) = 4 \cos(300t + 30^\circ) \text{ A}$$

$$v_L(t) = 24 \cos(300t + 120^\circ) \text{ V}$$

$$p_L(1 \text{ ms}) = i(1 \text{ ms}) \times v(1 \text{ ms}) = 4 \cos(0.3 + 0.5236) \times 24 \cos(0.3 + 2.0944) = 2.718 \times (-1.761) = -47.864 \text{ W}$$


2. With reference to the periodic voltage with period 4 ms graphed below,

(a) Find the numerical average voltage. $v_{avg} = \text{_____ V}$

(b) Find the numerical average of the squared voltage. $v_{avg}^2 = \text{_____ V}^2$

(This means square the voltage and then average it, not average the voltage and then square it.)

(c) Find the numerical effective value of the voltage. $V_{eff} = \text{_____ V}$

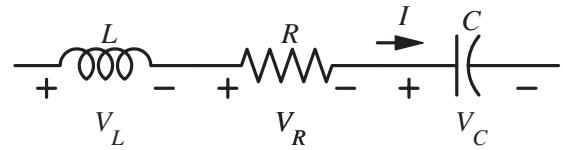
$$v_{avg} = \frac{10 \times 1 - 4 \times 2 + 5 \times 1}{4} = 7 / 4 = 1.75 \text{ V}$$

$$v_{avg}^2 = \frac{100 \times 1 + 16 \times 2 + 25 \times 1}{4} = 157 / 4 = 39.25 \text{ V}^2$$

$$V_{eff} = \sqrt{v_{avg}^2} = \sqrt{39.25} = 6.265 \text{ V}$$

Solution of ECE 202 Test 3 S13

1. With reference to the partial circuit below,


- (a) Find the numerical average real power absorbed by the resistor. $P_R = \text{_____ W}$
- (b) The numerical impedance of the capacitor. $Z_C = \text{_____} \angle \text{_____}^\circ \Omega$
- (c) The numerical phasor voltage across the capacitor. $V_C = \text{_____} \angle \text{_____}^\circ \text{V}$
- (d) Find the numerical apparent power absorbed by the capacitor. $P_{C,App} = \text{_____ VA}$
- (e) The numerical impedance of the inductor. $Z_L = \text{_____} \angle \text{_____}^\circ \Omega$
- (f) The numerical phasor voltage across the inductor. $V_L = \text{_____} \angle \text{_____}^\circ \text{V}$
- (g) Find the numerical complex power absorbed by the inductor.

$\mathbf{S}_L = \text{_____} \angle \text{_____}^\circ \text{VA}$

- (h) Find the time-domain current. $i(t) = \text{_____ A}$
- (i) Find the time-domain voltage across the inductor. $v_L(t) = \text{_____ V}$
- (j) Find the numerical instantaneous power absorbed by the inductor at time $t = 1 \text{ ms}$.

$$p_L(1 \text{ ms}) = \text{_____ W}$$

$$I = 5 \angle -20^\circ \text{ A}, L = 20 \text{ mH}, R = 70 \Omega, C = 240 \mu\text{F}, \omega = 200 \text{ s}^{-1}$$

$$P_R = \frac{|I|^2}{2} R = \frac{5^2}{2} 70 = 875 \text{ W}$$

$$Z_C = \frac{1}{j\omega C} = \frac{1}{j200 \times 240 \times 10^{-6}} = 20.833 \angle -90^\circ \Omega$$

$$V_C = IZ_C = 5 \angle -20^\circ \times 20.833 \angle -90^\circ = 104.166 \angle -110^\circ \text{ V}$$

$$P_{C,App} = \frac{|V_C||I|}{2} = \frac{104.166 \times 5}{2} = 260.417 \text{ VA}$$

$$Z_L = j\omega L = j200 \times 0.02 = 4 \angle 90^\circ \Omega$$

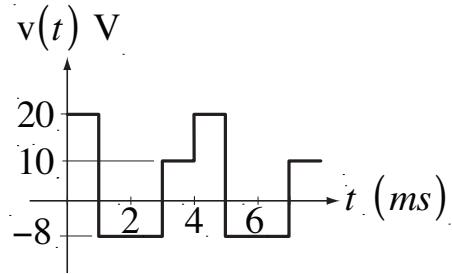
$$V_L = IZ_L = 5 \angle -20^\circ \times 4 \angle 90^\circ = 20 \angle 70^\circ \text{ V}$$

$$\mathbf{S}_L = \frac{V_L I^*}{2} = \frac{20 \angle 70^\circ \times 5 \angle 20^\circ}{2} = 50 \angle 90^\circ \text{ VA}$$

$$i(t) = 5 \cos(200t - 20^\circ) \text{ A}$$

$$v_L(t) = 20 \cos(200t + 70^\circ) \text{ V}$$

$$p_L(1 \text{ ms}) = i(1 \text{ ms}) \times v(1 \text{ ms}) = 5 \cos(0.2 - 0.349) \times 20 \cos(0.2 + 1.222) = 4.945 \times 2.965 = 14.662 \text{ W}$$


2. With reference to the periodic voltage with period 4 ms graphed below,

(a) Find the numerical average voltage. $v_{avg} = \text{_____ V}$

(b) Find the numerical average of the squared voltage. $v_{avg}^2 = \text{_____ V}^2$

(This means square the voltage and then average it, not average the voltage and then square it.)

(c) Find the numerical effective value of the voltage. $V_{eff} = \text{_____ V}$

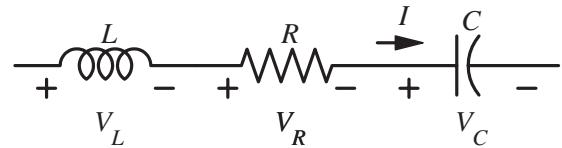
$$v_{avg} = \frac{20 \times 1 - 8 \times 2 + 10 \times 1}{4} = 14 / 4 = 3.5 \text{ V}$$

$$v_{avg}^2 = \frac{400 \times 1 + 64 \times 2 + 100 \times 1}{4} = 628 / 4 = 157 \text{ V}^2$$

$$V_{eff} = \sqrt{v_{avg}^2} = \sqrt{157} = 12.53 \text{ V}$$

Solution of ECE 202 Test 3 S13

1. With reference to the partial circuit below,


- (a) Find the numerical average real power absorbed by the resistor. $P_R = \text{_____ W}$
- (b) The numerical impedance of the capacitor. $Z_C = \text{_____} \angle \text{_____}^\circ \Omega$
- (c) The numerical phasor voltage across the capacitor. $V_C = \text{_____} \angle \text{_____}^\circ \text{V}$
- (d) Find the numerical apparent power absorbed by the capacitor. $P_{C,App} = \text{_____ VA}$
- (e) The numerical impedance of the inductor. $Z_L = \text{_____} \angle \text{_____}^\circ \Omega$
- (f) The numerical phasor voltage across the inductor. $V_L = \text{_____} \angle \text{_____}^\circ \text{V}$
- (g) Find the numerical complex power absorbed by the inductor.

$\mathbf{S}_L = \text{_____} \angle \text{_____}^\circ \text{VA}$

- (h) Find the time-domain current. $i(t) = \text{_____ A}$
- (i) Find the time-domain voltage across the inductor. $v_L(t) = \text{_____ V}$
- (j) Find the numerical instantaneous power absorbed by the inductor at time $t = 1 \text{ ms}$.

$$p_L(1 \text{ ms}) = \text{_____ W}$$

$$I = 3 \angle 50^\circ \text{ A}, L = 20 \text{ mH}, R = 70 \Omega, C = 240 \mu\text{F}, \omega = 100 \text{ s}^{-1}$$

$$P_R = \frac{|I|^2}{2} R = \frac{3^2}{2} 70 = 315 \text{ W}$$

$$Z_C = \frac{1}{j\omega C} = \frac{1}{j100 \times 240 \times 10^{-6}} = 41.667 \angle -90^\circ \Omega$$

$$V_C = IZ_C = 3 \angle 50^\circ \times 41.667 \angle -90^\circ = 125 \angle -40^\circ \text{ V}$$

$$P_{C,App} = \frac{|V_C||I|}{2} = \frac{125 \times 3}{2} = 187.5 \text{ VA}$$

$$Z_L = j\omega L = j100 \times 0.02 = 2 \angle 90^\circ \Omega$$

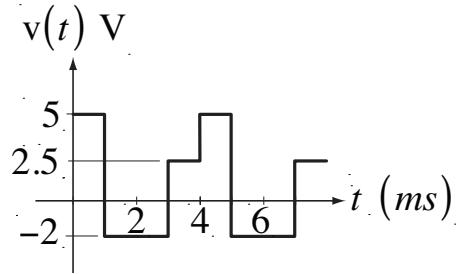
$$V_L = IZ_L = 3 \angle 50^\circ \times 2 \angle 90^\circ = 6 \angle 140^\circ \text{ V}$$

$$\mathbf{S}_L = \frac{V_L I_L^*}{2} = \frac{6 \angle 140^\circ \times 3 \angle -50^\circ}{2} = 9 \angle 90^\circ \text{ VA}$$

$$i(t) = 3 \cos(100t + 50^\circ) \text{ A}$$

$$v_L(t) = 6 \cos(100t + 140^\circ) \text{ V}$$

$$p_L(1 \text{ ms}) = i(1 \text{ ms}) \times v(1 \text{ ms}) = 3 \cos(0.1 + 0.8727) \times 6 \cos(0.1 + 2.443) = 1.689 \times (-4.957) = -8.372 \text{ W}$$


2. With reference to the periodic voltage with period 4 ms graphed below,

(a) Find the numerical average voltage. $v_{avg} = \text{_____ V}$

(b) Find the numerical average of the squared voltage. $v_{avg}^2 = \text{_____ V}^2$

(This means square the voltage and then average it, not average the voltage and then square it.)

(c) Find the numerical effective value of the voltage. $V_{eff} = \text{_____ V}$

$$v_{avg} = \frac{5 \times 1 - 2 \times 2 + 2.5 \times 1}{4} = 7/8 = 0.875 \text{ V}$$

$$v_{avg}^2 = \frac{25 \times 1 + 4 \times 2 + 6.25 \times 1}{4} = 9.8125 \text{ V}^2$$

$$V_{eff} = \sqrt{v_{avg}^2} = \sqrt{9.8125} = 3.1325 \text{ V}$$