Solution of ECE 300 Test 10 S09

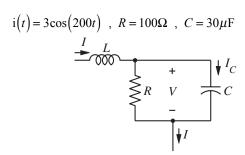
1. In the partial circuit below I is the phasor form of i(t), I_C is the phasor form of $i_C(t)$ and V is the phasor form of v(t). Find the numerical values of I_C and V in magnitude-angle form (angle in degrees).

 $\omega = 200$

$$I_{C} = \frac{R}{R + 1/j\omega C}I = \frac{100}{100 + 1/\left(j200 \times 30 \times 10^{-6}\right)}3\angle 0^{\circ} = \frac{100}{100 - j166.67}3\angle 0^{\circ}$$

$$I_C = \frac{100}{194.37 \angle -59.04^{\circ}} 3\angle 0^{\circ} = 1.5434\angle 59.04^{\circ}$$

$$V = I_{C} \times 1/j\omega C = 1.5434 \angle 59.04^{\circ} \times (166.67 \angle -90^{\circ}) = 257.24 \angle -30.96^{\circ}$$



2. In each part below find which current or voltage is leading the other and by how many degrees. The angle you report should be a positive angle between 0° and 180° .

(a)
$$v_1(t) = -4\cos(50t - 30^\circ)$$
, $v_2(t) = 3\sin(50t)$
 $v_1(t) = 4\cos(50t + 150^\circ)$, $v_2(t) = 3\cos(50t - 90^\circ)$

The phase-angle difference is $150^{\circ} - \left(-90^{\circ}\right) = 240^{\circ} > 180^{\circ}$. An equivalent phase-angle difference is $240^{\circ} - 360^{\circ} = -120^{\circ}$. So v_1 leads v_2 by -120° or v_2 leads v_1 by $+120^{\circ}$.

(b)
$$i_1(t) = 8\cos(2000t + 100^\circ)$$
, $i_2(t) = -3\sin(2000t + 20^\circ)$
 $i_1(t) = 8\cos(2000t + 100^\circ)$, $i_2(t) = 3\sin(2000t - 160^\circ)$
 $i_1(t) = 8\cos(2000t + 100^\circ)$, $i_2(t) = 3\cos(2000t - 250^\circ)$

The phase-angle difference is $100^{\circ} - \left(-250^{\circ}\right) = 350^{\circ} > 180^{\circ}$. An equivalent phase-angle difference is $350^{\circ} - 360^{\circ} = -10^{\circ}$. So i_1 leads i_2 by -10° or i_2 leads i_1 by $+10^{\circ}$.

Solution of ECE 300 Test 10 S09

1. In the partial circuit below I is the phasor form of i(t), I_C is the phasor form of $i_C(t)$ and V is the phasor form of v(t). Find the numerical values of I_C and V in magnitude-angle form (angle in degrees).

 $\omega = 100$

$$I_C = \frac{R}{R + 1/j\omega C}I = \frac{100}{100 + 1/(j100 \times 30 \times 10^{-6})}3\angle 0^\circ = \frac{100}{100 - j333.33}3\angle 0^\circ$$

$$I_C = \frac{100}{348.007 \angle -73.3^{\circ}} 3\angle 0^{\circ} = 0.8621 \angle 73.3^{\circ}$$

$$V = I_C \times 1/j\omega C = 0.8621 \angle 73.3^{\circ} \times (333.33 \angle -90^{\circ}) = 287.36 \angle -16.7^{\circ}$$

$$i(t) = 3\cos(100t)$$
, $R = 100\Omega$, $C = 30\mu$ F

2. In each part below find which current or voltage is leading the other and by how many degrees. The angle you report should be a positive angle between 0° and 180° .

(a)
$$v_1(t) = -4\cos(50t - 80^\circ)$$
, $v_2(t) = 3\sin(50t)$
 $v_1(t) = 4\cos(50t + 100^\circ)$, $v_2(t) = 3\cos(50t - 90^\circ)$

The phase-angle difference is $100^{\circ} - \left(-90^{\circ}\right) = 190^{\circ} > 180^{\circ}$. An equivalent phase-angle difference is $190^{\circ} - 360^{\circ} = -170^{\circ}$. So v_1 leads v_2 by -170° or v_2 leads v_1 by $+170^{\circ}$.

(b)
$$i_1(t) = 8\cos(2000t + 100^\circ)$$
, $i_2(t) = -3\sin(2000t - 50^\circ)$
 $i_1(t) = 8\cos(2000t + 100^\circ)$, $i_2(t) = 3\sin(2000t + 130^\circ)$
 $i_1(t) = 8\cos(2000t + 100^\circ)$, $i_2(t) = 3\cos(2000t + 40^\circ)$

The phase-angle difference is $100^{\circ} - 40^{\circ} = 60^{\circ}$. So i₁ leads i₂ by 60° .

Solution of ECE 300 Test 10 S09

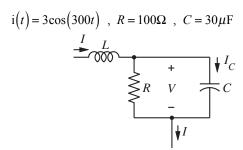
1. In the partial circuit below I is the phasor form of i(t), I_C is the phasor form of $i_C(t)$ and V is the phasor form of v(t). Find the numerical values of I_C and V in magnitude-angle form (angle in degrees).

 $\omega = 300$

$$I_{c} = \frac{R}{R+1/j\omega C}I = \frac{100}{100+1/\left(j300\times30\times10^{-6}\right)}3\angle0^{\circ} = \frac{100}{100-j111.11}3\angle0^{\circ}$$

$$I_C = \frac{100}{149.48 \angle - 48.01^{\circ}} 3\angle 0^{\circ} = 2.007 \angle 48.01^{\circ}$$

$$V = I_{_{C}} \times 1 / j\omega C = 2.007 \angle 48.01^{\circ} \times (111.11 \angle -90^{\circ}) = 223 \angle -41.99^{\circ}$$



2. In each part below find which current or voltage is leading the other and by how many degrees. The angle you report should be a positive angle between 0° and 180° .

(a)
$$v_1(t) = -4\cos(50t - 60^\circ)$$
, $v_2(t) = 3\sin(50t)$
 $v_1(t) = 4\cos(50t + 120^\circ)$, $v_2(t) = 3\cos(50t - 90^\circ)$

The phase-angle difference is $120^{\circ} - \left(-90^{\circ}\right) = 210^{\circ} > 180^{\circ}$. An equivalent phase-angle difference is $210^{\circ} - 360^{\circ} = -150^{\circ}$. So v_1 leads v_2 by -150° or v_2 leads v_1 by $+150^{\circ}$.

(b)
$$i_1(t) = 8\cos(2000t + 100^\circ)$$
, $i_2(t) = -3\sin(2000t + 70^\circ)$
 $i_1(t) = 8\cos(2000t + 100^\circ)$, $i_2(t) = 3\sin(2000t - 110^\circ)$
 $i_1(t) = 8\cos(2000t + 100^\circ)$, $i_2(t) = 3\cos(2000t - 200^\circ)$

The phase-angle difference is $100^{\circ} - \left(-200^{\circ}\right) = 300^{\circ} > 180^{\circ}$. An equivalent phase-angle difference is $300^{\circ} - 360^{\circ} = -60^{\circ}$. So i_1 leads i_2 by -60° or i_2 leads i_1 by $+60^{\circ}$.