Solution of ECE 202 Test 1 S13

1. In each case illustrated below find the angle θ in degrees by which $v_1(t)$ or V_1 leads $v_2(t)$ or V_2 . In each case your answer should lie in the range $-180^{\circ} \le \theta \le +180^{\circ}$.

20 ms $\rightarrow 2\pi$ radians or $360^{\circ} \Rightarrow 4$ ms $\rightarrow \frac{2\pi}{5}$ radians or $\frac{360^{\circ}}{5} = 72^{\circ}$ \therefore v₁(t) leads v₂(t) by 72°

50 s $\rightarrow 2\pi$ radians or $360^{\circ} \Rightarrow 40 \text{ s} \rightarrow \frac{4 \times 2\pi}{5}$ radians or $\frac{4 \times 360^{\circ}}{5} = 288^{\circ}$

 \therefore $v_2(t)$ leads $v_1(t)$ by $288^\circ - 180^\circ = 108^\circ \Rightarrow v_1(t)$ leads $v_2(t)$ by -108°

 V_2 leads V_1 by $(180^{\circ} - 25^{\circ}) - 30^{\circ} = 125^{\circ} \Rightarrow V_1$ leads V_2 by -125°

2.	Express each of the following numbers or expressions as a single complex number in polar form (magnitude and
	angle).

(a)
$$j24 = \underline{\hspace{1cm}} 24 \angle 90^{\circ}$$

(b)
$$6+j11 = 2.53\angle 61.3895^{\circ}$$

(c)
$$\frac{9\angle 48^{\circ}}{2+j} =$$
_____ \angle _____ $^{\circ}$ 4.0239 $\angle 21.4349^{\circ}$

(d)
$$(3e^{j85^{\circ}})(1-j) =$$
______ \angle ______ \circ 4.2426 \angle 40°

3. Find the phasor equivalent of each of these voltages or currents. (Remember, the zero-angle reference for phasors is an unshifted cosine.) In each case the angle θ should lie in the range $-180^{\circ} \le \theta \le +180^{\circ}$.

(a)
$$v(t) = 18\sin(200\pi t - 30^\circ) \rightarrow V =$$
_______ \simeq $18 \angle -120^\circ$

(b)
$$i(t) = -13\cos(20t + 140^\circ) \rightarrow I = ____ \angle ___$$
 $13\angle -40^\circ$

Solution of ECE 202 Test 1 S13

- 1. In each case illustrated below find the angle θ in degrees by which $v_1(t)$ or V_1 leads $v_2(t)$ or V_2 . In each case your answer should lie in the range $-180^{\circ} \le \theta \le +180^{\circ}$.
 - (a) $\theta =$

20 ms $\rightarrow 2\pi$ radians or $360^{\circ} \Rightarrow 5$ ms $\rightarrow \frac{2\pi}{4}$ radians or $\frac{360^{\circ}}{4} = 90^{\circ}$

 \therefore $v_1(t)$ leads $v_2(t)$ by 90°

50 s $\rightarrow 2\pi$ radians or 360° \Rightarrow 30 s $\rightarrow \frac{3 \times 2\pi}{5}$ radians or $\frac{3 \times 360^{\circ}}{5} = 216^{\circ}$

 \therefore v₂(t) leads v₁(t) by 216° – 180° = 36° \Rightarrow v₁(t) leads v₂(t) by – 36°

(c) $\theta =$

 V_2 leads V_1 by $(180^{\circ} - 35^{\circ}) - 30^{\circ} = 115^{\circ} \Rightarrow V_1$ leads V_2 by -115°

2.	Express each of the following numbers or expressions as a single complex number in polar form (magnitude and
	angle).

(a)
$$j18 = ___ \angle __ \circ 18\angle 90^\circ$$

(b)
$$4 + j13 =$$
_____ $^{\circ}$ $13.60 \angle 72.8973^{\circ}$

(c)
$$\frac{11\angle 38^{\circ}}{2+j4} =$$
______ $^{\circ}$ $2.4597\angle -25.4349^{\circ}$

(d)
$$(3e^{j85^{\circ}})(1-j2) =$$
______ \leq 6.7082 \leq 21.5651°

3. Find the phasor equivalent of each of these voltages or currents. (Remember, the zero-angle reference for phasors is an unshifted cosine.) In each case the angle θ should lie in the range $-180^{\circ} \le \theta \le +180^{\circ}$.

(a)
$$v(t) = 18\sin(200\pi t - 40^\circ) \rightarrow V =$$
_______ $18 \angle -130^\circ$

(b)
$$i(t) = -13\cos(20t + 120^\circ) \rightarrow I = ____ \angle ___$$
 $13\angle -60^\circ$

Solution of ECE 202 Test 1 S13

1. In each case illustrated below find the angle θ in degrees by which $v_1(t)$ or V_1 leads $v_2(t)$ or V_2 . In each case your answer should lie in the range $-180^{\circ} \le \theta \le +180^{\circ}$.

(a) $\theta =$

20 ms $\rightarrow 2\pi$ radians or $360^{\circ} \Rightarrow 6$ ms $\rightarrow \frac{3 \times 2\pi}{10}$ radians or $\frac{3 \times 360^{\circ}}{10} = 108^{\circ}$ $\therefore v_1(t)$ leads $v_2(t)$ by 108°

(b) $\theta =$

50 s $\rightarrow 2\pi$ radians or 360° \Rightarrow 35 s $\rightarrow \frac{7 \times 2\pi}{10}$ radians or $\frac{7 \times 360^{\circ}}{10} = 252^{\circ}$ $\therefore v_2(t)$ leads $v_1(t)$ by 252° $-180^{\circ} = 72^{\circ} \Rightarrow v_1(t)$ leads $v_2(t)$ by -72°

(c) $\theta =$ _____°

 V_2 leads V_1 by $(180^\circ - 55^\circ) - 30^\circ = 95^\circ \Rightarrow V_1$ leads V_2 by -95°

2.	Express each of the following numbers or expressions as a single complex number in polar form (magnitude and
	angle).

(a)
$$j9 = ___ \angle __ \circ 9\angle 90^\circ$$

(b)
$$2 - j11 =$$
______° $11.18 \angle - 79.695$ °

(c)
$$\frac{7\angle 68^{\circ}}{5+i} =$$
_____ \angle _____ $^{\circ}$ 1.3728 $\angle 56.6901^{\circ}$

(d)
$$(3e^{j55^{\circ}})(3-j) =$$
________ \angle _______ \circ 9.4868 \angle 36.5651 \circ

3. Find the phasor equivalent of each of these voltages or currents. (Remember, the zero-angle reference for phasors is an unshifted cosine.) In each case the angle θ should lie in the range $-180^{\circ} \le \theta \le +180^{\circ}$.

(b)
$$i(t) = -13\cos(20t + 80^\circ) \rightarrow I = ____ \angle ___$$
 $13\angle -100^\circ$