Solution of EECS 315 Test 2 F10

In every system on this test, x is the excitation and y is the response.

 $\mathbf{y}(t) = \operatorname{ramp}(\mathbf{x}(t)) = \mathbf{x}(t)\mathbf{u}(\mathbf{x}(t))$ 1. Circle the correct properties. Stable Time Invariant Linear Static Invertible Unstable Non-Linear Dynamic Non-Invertible Time Variant x bounded \Rightarrow y bounded \Rightarrow Stable Let $x_1(t) = g(t)$. Then $y_1(t) = \operatorname{ramp}(g(t))$. Let $x_2(t) = -g(t)$. Then $y_2(t) = \operatorname{ramp}(-g(t)) \neq -\operatorname{ramp}(g(t)) \Rightarrow \text{Non-Linear}$ y(t) depends only on $x(t) \Rightarrow$ Static Many different x(t)'s can produce $y(t) = 0 \Rightarrow$ Non-Invertible Let $x_2(t) = g(t - t_0)$. Then $y_2(t) = \operatorname{ramp}(g(t - t_0)) = y_1(t - t_0) \Rightarrow$ Time-Invariant $\mathbf{y}(t) = \mathbf{x}(t)\mathbf{u}(t)$ 2. Circle the correct properties. Stable Linear Static Invertible Time Invariant Unstable Non-Linear Dynamic Non-Invertible Time Variant x bounded \Rightarrow y bounded \Rightarrow Stable Let $x_1(t) = g(t)$. Then $y_1(t) = g(t)u(t)$. Let $x_2(t) = Kg(t)$. Then $y_2(t) = Kg(t)u(t) = Ky_1(t) \Rightarrow$ Homogeneous Let $x_2(t) = h(t)$. Then $y_2(t) = h(t)u(t)$. Let $x_3(t) = g(t) + h(t)$. Then $y_3(t) = \lfloor g(t) + h(t) \rfloor u(t) = y_1(t) + y_2(t) \Rightarrow$ Additive \Rightarrow Linear y(t) depends only on $x(t) \Rightarrow$ Static For t < 0, y(t) = 0 regardless of $x(t) \Rightarrow$ Non-Invertible Let $x_2(t) = g(t - t_0)$. Then $y_2(t) = g(t - t_0)u(t) \neq y_1(t - t_0) \Rightarrow$ Time-Variant

3. 4y[n] - 3y[n-1] = x[n] Circ

Circle the correct properties.

Linear Static Invertible Stable Non-Linear Dynamic Non-Invertible Unstable

Standard difference equation form with constant coefficients \Rightarrow Linear Block diagram requires delays \Rightarrow Dynamic Difference equation states directly how to find $x[n] \Rightarrow$ Invertible Eigenvalue is 3/4. Magnitude less than one. \Rightarrow Stable

4. y(t) = sin(x(t)) Circle the correct properties.

Linear	Causal	Invertible	Stable
Non-Linear	Non-Causal	Non-Invertible	Unstable

Let $x_1(t) = g(t)$. Then $y_1(t) = sin(g(t))$. Let $x_2(t) = K g(t)$. Then $y_2(t) = sin(K g(t)) \neq K y_1(t) \Rightarrow$ Non-Linear y(t) depends only on $x(t) \Rightarrow$ Static \Rightarrow Causal $x(t) = sin^{-1}(y(t))$ which is multi-valued \Rightarrow Non-Invertible sin(x(t)) is never greater then one in magnitude \Rightarrow Stable

- 5. The impulse response of a continuous-time system described by a differential equation consists of a linear combination of one or more functions of the form Ke^{st} where *s* is an eigenvalue and, in some cases, an impulse of the form $K_{\delta}\delta(t)$. How many constants of each type are needed for each system.
 - (a) ay'(t) + by(t) = cx(t) a, b and c are constants.

One K's Zero K_{δ} 's

(b) ay'(t) + by(t) = cx'(t) a, b and c are constants.

One K's One K_{δ} 's

(c) ay'''(t) + by(t) = cx'(t) a, b and c are constants.

Three K 's Zero K_{δ} 's

(d) ay''(t) + by(t) = cx''(t) + dx'(t) a, b, c and d are constants.

Two K's One K_{δ} 's

6. If $y(t) = -4 + 8 \operatorname{rect}(t/3) * 2 \operatorname{rect}(2t)$ what is the maximum (most positive) numerical value of y(t) over all time t?

The maximum occurs when $8 \operatorname{rect}(t/3) * 2 \operatorname{rect}(2t)$ reaches its maximum value and that occurs when the narrower rectangle is fully within the wider rectangle. The area under the product at that time is $8 \times 2 \times 1/2 = 8$. So the maximum is 4.

7. If
$$y[n] = (u[n-4] - u[n-13]) * (u[n+6] - u[n-1])$$

(a) What is the maximum (most positive) numerical value of y[n] over all time n?

These are two rectangular shapes, one of width 9 and one of width 7. The maximum occurs when the narrower one lies fully inside the wider one. At that time the sum of the product is 7.

(b) Over what numerical range or ranges of n is y[n] <u>non-zero</u>?

 $-2 \le n < 13$ or $-2 \le n \le 12$

- 8. If y[n] = (u[4-n]-u[n-13])*(u[n+6]-u[n-1])
 - (a) What is the maximum (most positive) numerical value of y[n] over all time n?

The first signal is one from n equals minus infinity through 4 and minus one from n equals 13 to positive infinity. The second signal is rectangular with 7 non-zero impulses. The maximum occurs anywhere the rectangular pulse lies wholly within the region in which the first signal is one. Then the sum of the product is 7.

(b) Over what numerical range or ranges of *n* is $y[n] \underline{zero}$?

n = 5, 6

Solution of EECS 315 Test 2 F10

In every system on this test, x is the excitation and y is the response.

1.	$\mathbf{y}(t) = \sin(\mathbf{x}(t))$	f(x(t)) = sin(x(t)) Circle the correct properties.					
		No	Linear m-Linear N	Causal Ion-Causal	Invertible Non-Invertible	Stable Unstable	
	Let $x_1(t) = g(t)$. Then $y_1(t) = sin(g(t))$.						
		Let $\mathbf{x}_2(t) =$	Kg(t). The	en $y_2(t) = si$	$ in(Kg(t)) \neq Ky_1 $	$(t) \Rightarrow$ Non-Linear	
		$\mathbf{y}(t)$ dependence	ids only on x	$t(t) \Rightarrow \text{Static}$	$c \Rightarrow Causal$		
		$\mathbf{x}(t) = \sin^{-1}$	$(\mathbf{y}(t))$ whic	h is multi-v	alued \Rightarrow Non-Inv	ertible	
		$\sin(\mathbf{x}(t))$ i	s never great	er then one	in magnitude \Rightarrow S	Stable	
2.	y(t) = ramp(x(t)) = x(t)u(x(t)) Circle the correct properties.						
		Stable Unstable	Linear Non-Linear	Static Dynamic	Invertible Non-Invertible	Time Invariant Time Variant	
	x bounded \Rightarrow y bounded \Rightarrow Stable						
	Let $x_1(t) = g(t)$. Then $y_1(t) = ramp(g(t))$.						
	Let $x_2(t) = -g(t)$. Then $y_2(t) = \operatorname{ramp}(-g(t)) \neq -\operatorname{ramp}(g(t)) \Rightarrow$ Non-Linear						
	$y(t)$ depends only on $x(t) \Rightarrow$ Static						
	Many different $x(t)$'s can produce $y(t) = 0 \Rightarrow$ Non-Invertible						
	Let $\mathbf{x}_2(t) = \mathbf{g}(t - t_0)$. Then $\mathbf{y}_2(t) = \operatorname{ramp}(\mathbf{g}(t - t_0)) = \mathbf{y}_1(t - t_0) \Rightarrow$ Time-Invariant						
3.	y(t) = x(t)u(t) Circle the correct properties.						
		Stable Unstable	Linear Non-Linear	Static Dynamic	Invertible Non-Invertible	Time Invariant Time Variant	
	x bound	$ed \Rightarrow y bound$	$ed \Rightarrow Stable$				
	Let $\mathbf{x}_1(t)$) = g(t). Then	$\mathbf{y}_1(t) = \mathbf{g}(t)$	u(t).			
	Let $\mathbf{x}_2(t) = K \mathbf{g}(t)$. Then $\mathbf{y}_2(t) = K \mathbf{g}(t) \mathbf{u}(t) = K \mathbf{y}_1(t) \Rightarrow$ Homogeneous						
	Let $x_2(t) = h(t)$. Then $y_2(t) = h(t)u(t)$.						
	Let $x_3(t)$	$\mathbf{g}(t) = \mathbf{g}(t) + \mathbf{h}(t)$. Then $y_3(t)$	= [g(t) + h]	$(t)]\mathbf{u}(t) = \mathbf{y}_1(t) +$	$+ y_2(t) \Rightarrow \text{Additive} \Rightarrow \text{I}$	
			()				

y(t) depends only on $x(t) \Rightarrow$ Static

For t < 0, y(t) = 0 regardless of $x(t) \Rightarrow$ Non-Invertible

Let
$$\mathbf{x}_2(t) = \mathbf{g}(t - t_0)$$
. Then $\mathbf{y}_2(t) = \mathbf{g}(t - t_0)\mathbf{u}(t) \neq \mathbf{y}_1(t - t_0) \Rightarrow$ Time-Variant

4.
$$4y[n] - 3y[n-1] = x[n]$$
 Circle the correct properties.
Linear Static Invertible Stable
Non-Linear Dynamic Non-Invertible Unstable

Standard difference equation form with constant coefficients \Rightarrow Linear Block diagram requires delays \Rightarrow Dynamic Difference equation states directly how to find $x[n] \Rightarrow$ Invertible Eigenvalue is 3/4. Magnitude less than one. \Rightarrow Stable

Linear

5. The impulse response of a continuous-time system described by a differential equation consists of a linear combination of one or more functions of the form Ke^{st} where *s* is an eigenvalue and, in some cases, an impulse of the form $K_{\delta}\delta(t)$. How many constants of each type are needed for each system.

(a) ay''(t) + by(t) = cx''(t) + dx'(t) a, b, c and d are constants.

Two K's One K_{δ} 's

(b) ay'(t) + by(t) = cx(t) a, b and c are constants.

One K's Zero K_{δ} 's

(c) ay'(t) + by(t) = cx'(t) a, b and c are constants.

One K's One K_{δ} 's

(d) ay'''(t) + by(t) = cx'(t) a, b and c are constants.

Three K 's Zero K_{δ} 's

6. If $y(t) = -6 + 8 \operatorname{rect}(t/3) * 2 \operatorname{rect}(2t)$ what is the maximum (most positive) numerical value of y(t) over all time t?

The maximum occurs when $8 \operatorname{rect}(t/3) * 2 \operatorname{rect}(2t)$ reaches its maximum value and that occurs when the narrower rectangle is fully within the wider rectangle. The area under the product at that time is $8 \times 2 \times 1/2 = 8$. So the maximum is 2.

- 7. If y[n] = (u[n-4] u[n-12]) * (u[n+5] u[n-1])
 - (a) What is the maximum (most positive) numerical value of y[n] over all time n?

These are two rectangular shapes, one of width 8 and one of width 6. The maximum occurs when the narrower one lies fully inside the wider one. At that time the sum of the product is 6.

(b) Over what numerical range or ranges of *n* is y[n] <u>non-zero</u>?

 $-1 \le n < 12$ or $-1 \le n \le 11$

- 8. If y[n] = (u[4-n]-u[n-12])*(u[n+5]-u[n-1])
 - (a) What is the maximum (most positive) numerical value of y[n] over all time n?

The first signal is one from n equals minus infinity through 4 and minus one from n equals 12 to positive infinity. The second signal is rectangular with 6 non-zero impulses. The maximum occurs anywhere the rectangular pulse lies wholly within the region in which the first signal is one. Then the sum of the product is 6.

(b) Over what numerical range or ranges of *n* is $y[n] \underline{zero}$?

n = 5,6

Solution of EECS 315 Test 2 F10

In every system on this test, x is the excitation and y is the response.

1. y(t) = x(t)u(t)

Stable	Linear	Static	Invertible	Time Invariant
Unstable	Non-Linear	Dynamic	Non-Invertible	Time Variant

Circle the correct properties.

x bounded \Rightarrow y bounded \Rightarrow Stable Let $x_1(t) = g(t)$. Then $y_1(t) = g(t)u(t)$. Let $x_2(t) = Kg(t)$. Then $y_2(t) = Kg(t)u(t) = Ky_1(t) \Rightarrow$ Homogeneous Let $x_2(t) = h(t)$. Then $y_2(t) = h(t)u(t)$. Let $x_3(t) = g(t) + h(t)$. Then $y_3(t) = [g(t) + h(t)]u(t) = y_1(t) + y_2(t) \Rightarrow$ Additive \Rightarrow Linear y(t) depends only on $x(t) \Rightarrow$ Static For t < 0, y(t) = 0 regardless of $x(t) \Rightarrow$ Non-Invertible Let $x_2(t) = g(t - t_0)$. Then $y_2(t) = g(t - t_0)u(t) \neq y_1(t - t_0) \Rightarrow$ Time-Variant

2. 4y[n] - 3y[n-1] = x[n] Circle the correct properties.

Linear Static Invertible Stable Non-Linear Dynamic Non-Invertible Unstable

Standard difference equation form with constant coefficients \Rightarrow Linear Block diagram requires delays \Rightarrow Dynamic Difference equation states directly how to find $x[n] \Rightarrow$ Invertible Eigenvalue is 3/4. Magnitude less than one. \Rightarrow Stable

3. y(t) = sin(x(t))

Circle the correct properties.

Linear Causal Invertible Stable Non-Linear Non-Causal Non-Invertible Unstable

Let
$$x_1(t) = g(t)$$
. Then $y_1(t) = sin(g(t))$.
Let $x_2(t) = K g(t)$. Then $y_2(t) = sin(K g(t)) \neq K y_1(t) \Rightarrow$ Non-Linear $y(t)$ depends only on $x(t) \Rightarrow$ Static \Rightarrow Causal $x(t) = sin^{-1}(y(t))$ which is multi-valued \Rightarrow Non-Invertible $sin(x(t))$ is never greater then one in magnitude \Rightarrow Stable

4. $y(t) = \operatorname{ramp}(x(t)) = x(t)u(x(t))$ Circle the correct properties.

Stable	Linear	Static	Invertible	Time Invariant
Unstable	Non-Linear	Dynamic	Non-Invertible	Time Variant

x bounded \Rightarrow y bounded \Rightarrow Stable Let $x_1(t) = g(t)$. Then $y_1(t) = \operatorname{ramp}(g(t))$. Let $x_2(t) = -g(t)$. Then $y_2(t) = \operatorname{ramp}(-g(t)) \neq -\operatorname{ramp}(g(t))$. \Rightarrow Non-Linear y(t) depends only on $x(t) \Rightarrow$ Static Many different x(t)'s can produce $y(t) = 0 \Rightarrow$ Non-Invertible Let $x_2(t) = g(t - t_0)$. Then $y_2(t) = \operatorname{ramp}(g(t - t_0)) = y_1(t - t_0) \Rightarrow$ Time-Invariant

5. The impulse response of a continuous-time system described by a differential equation consists of a linear combination of one or more functions of the form Ke^{st} where *s* is an eigenvalue and, in some cases, an impulse of the form $K_{\delta}\delta(t)$. How many constants of each type are needed for each system.

(a) ay'(t) + by(t) = cx'(t) a, b and c are constants.

One K's One K_{δ} 's

(b) ay'''(t) + by(t) = cx'(t) a, b and c are constants.

Three K 's Zero K_{δ} 's

(c) ay''(t) + by(t) = cx''(t) + dx'(t) a, b, c and d are constants.

Two K's One K_{δ} 's

(d) ay'(t) + by(t) = cx(t) a, b and c are constants.

One K's Zero K_{δ} 's

6. If $y(t) = -5 + 8 \operatorname{rect}(t/3) * 2 \operatorname{rect}(2t)$ what is the maximum (most positive) numerical value of y(t) over all time t?

The maximum occurs when $8 \operatorname{rect}(t/3) * 2 \operatorname{rect}(2t)$ reaches its maximum value and that occurs when the narrower rectangle is fully within the wider rectangle. The area under the product at that time is $8 \times 2 \times 1/2 = 8$. So the maximum is 3.

- 7. If y[n] = (u[n-4] u[n-12]) * (u[n+4] u[n-1])
 - (a) What is the maximum (most positive) numerical value of y[n] over all time n?

These are two rectangular shapes, one of width 8 and one of width 5. The maximum occurs when the narrower one lies fully inside the wider one. At that time the sum of the product is 5.

(b) Over what numerical range or ranges of *n* is y[n] <u>non-zero</u>?

 $0 \leq n < 12 \text{ or } 0 \leq n \leq 11$

- 8. If y[n] = (u[4-n] u[n-12]) * (u[n+4] u[n-1])
 - (a) What is the maximum (most positive) numerical value of y[n] over all time n?

The first signal is one from n equals minus infinity through 4 and minus one from n equals 12 to positive infinity. The second signal is rectangular with 5 non-zero impulses. The maximum occurs anywhere the rectangular pulse lies wholly within the region in which the first signal is one. Then the sum of the product is 5.

(b) Over what numerical range or ranges of *n* is $y[n] \underline{zero}$?

n = 5, 6, 7