Solution of ECE 315 Test 2 Su09

In the system descriptions below x is always the excitation and y is always the response.

1. A system is described by
$$y[n] = \begin{cases} 4 & , x[n] > 3 \\ x[n] & , -1 \le x[n] < 4 \\ -1 & , x[n] < -1 \end{cases}$$
 Circle the correct properties for this system.

If
$$x[n] = 3$$
, $y[n] = 3$ and if $x[n] = 6$, $y[n] = 4$. Not homogeneous \Rightarrow Not Linear.
If $x_1[n] = g[n]$, then $y_1[n] = \begin{cases} 4 & , g[n] > 3 \\ g[n] & , -1 \le g[n] < 4 \\ -1 & , g[n] < -1 \end{cases}$
If $x_2[n] = g[n - n_0]$, then $y_2[n] = \begin{cases} 4 & , g[n - n_0] > 3 \\ g[n - n_0] & , -1 \le g[n - n_0] < 4 \\ -1 & , g[n - n_0] < -1 \end{cases}$
Find the equation of the equa

The response never exceeds 4 in magnitude, regardless of the excitation. \Rightarrow Stable The response at time *n* depends only on the excitation at time *n*. \Rightarrow Static All static systems are causal. \Rightarrow Causal If the response is 4 or -1 there is no way to know what the excitation is. \Rightarrow Not Invertible

2. A system is described by y'(t+1) + x(t) = 6. Circle the correct properties for this system.

If x(t) = 0, y'(t+1) = 6 and if x(t) = 2, y'(t+1) = 8. Not homogeneous \Rightarrow Not Linear. If $x_1(t) = g(t)$, then $y'_1(t+1) = 6 - g(t)$ If $x_2(t) = g(t-t_0)$, then $y'_2(t+1) = 6 - g(t-t_0) = y'_1(t-t_0+1) \Rightarrow$ Time Invariant If x(t) is a non-zero constant then y'(t+1) is also and y(t) is not bounded. \Rightarrow Unstable The response at time t+1 depends on the excitation at time t. \Rightarrow Dynamic The response at time t+1 depends only on the excitation at the previous time t. \Rightarrow Causal $x(t) = 6 - y'(t+1) \Rightarrow$ Invertible

3. A system is described by y[n]+1.8y[n-1]+1.62y[n-2] = x[n]. Circle the correct properties for this system.

This equation is in the standard form for linear time invariant discrete-time systems therefore it is linear and time invariant. The eigenvalues are $-0.9 \pm j0.9$ with magnitude $1.2728 > 1. \Rightarrow$ Unstable The response at time *n* depends on responses at previous times. \Rightarrow Dynamic The response at time *n* depends on responses at previous times. \Rightarrow Causal y[n]+1.8y[n-1]+1.62y[n-2]=x[n] So knowing y allows us to compute $x \Rightarrow$ Invertible If $h(t) = 7 \operatorname{ramp}(2t)$ and x(t) = 3u(t) and y(t) = x(t) * h(t) find these numerical values.

(a)
$$x(1) = 3$$
, $h(1) = 7 \operatorname{ramp}(2) = 14 \Rightarrow x(1)h(1) = 42$

(b)
$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau = 21 \int_{-\infty}^{\infty} u(\tau)ramp(2(t-\tau))d\tau$$

 $y(t) = \begin{cases} 0, t < 0\\ 21 \int_{0}^{t} 2(t-\tau)d\tau, t > 0 \end{cases} = \begin{cases} 0, t < 0\\ 21 [2t\tau - \tau^{2}]_{0}^{t}, t > 0 \end{cases} = \begin{cases} 0, t < 0\\ 21t^{2}, t > 0 \end{cases}$
 $y(1) = \begin{cases} 0, t < 0\\ 21(1)^{2}, t > 0 \end{cases} = 21$

Although this analytical solution is correct, it is probably easier to solve this problem graphically.

4.

5. If a discrete-time system is described by $y[n] = \sum_{m=-\infty}^{n-4} x[m]$ graph its impulse response h[n] in the space provided. (Put a vertical scale on the graph so actual numerical values could be read.)

$$h[n] = \sum_{m=-\infty}^{n-4} \delta[m] = \begin{cases} 0 , n < 4 \\ 1 , n \ge 4 \end{cases} = u[n-4]$$

6. If a discrete-time system has an impulse response h[n] = -3ramp[n-2] find its response to the excitation $x[n] = \delta[n+3] - 2\delta[n+1]$ and fill in the table below with numbers.

$$y[n] = x[n] * h[n] = -3 \operatorname{ramp}[n-2] * (\delta[n+3] - 2\delta[n+1])$$
$$y[n] = -3 \operatorname{ramp}[n+1] + 6 \operatorname{ramp}[n-1]$$
$$n \quad 0 \quad 1 \quad 2 \quad 3$$
$$y[n] \quad -3 \quad -6 \quad -3 \quad 0$$

Solution of ECE 315 Test 2 Su09

In the system descriptions below x is always the excitation and y is always the response.

1. A system is described by $y[n-1] = \begin{cases} 4 & , x[n] > 3 \\ x[n] & , -1 \le x[n] < 4 \\ -1 & , x[n] < -1 \end{cases}$ Circle the correct properties for this system.

If
$$x[n] = 3$$
, $y[n-1] = 3$ and if $x[n] = 6$, $y[n-1] = 4$. Not homogeneous \Rightarrow Not Linear.
If $x_1[n] = g[n]$, then $y_1[n-1] = \begin{cases} 4 & , g[n] > 3 \\ g[n] & , -1 \le g[n] < 4 \\ -1 & , g[n] < -1 \end{cases}$
If $x_2[n] = g[n-n_0]$, then $y_2[n-1] = \begin{cases} 4 & , g[n-n_0] < 4 \\ g[n-n_0] & , -1 \le g[n-n_0] < 4 \\ -1 & , g[n-n_0] < -1 \end{cases} = y_1[n-n_0-1] \Rightarrow$ Time Invariant $-1 & , g[n-n_0] < -1 \end{cases}$

The response never exceeds 4 in magnitude, regardless of the excitation. \Rightarrow Stable The response at time n-1 depends on the excitation at time n. \Rightarrow Dynamic The response at time n-1 depends on the excitation at time n. \Rightarrow Non-Causal If the response is 4 or -1 there is no way to know what the excitation is. \Rightarrow Not Invertible

2. A system is described by y'(t+1) + x(t) = 6. Circle the correct properties for this system.

If x(t) = 0, y'(t+1) = 6 and if x(t) = 2, y'(t+1) = 8. Not homogeneous \Rightarrow Not Linear. If $x_1(t) = g(t)$, then $y'_1(t+1) = 6 - g(t)$ If $x_2(t) = g(t-t_0)$, then $y'_2(t+1) = 6 - g(t-t_0) = y'_1(t-t_0+1) \Rightarrow$ Time Invariant If x(t) is a non-zero constant then y'(t+1) is also and y(t) is not bounded. \Rightarrow Unstable The response at time t + 1 depends on the excitation at time t. \Rightarrow Dynamic The response at time t + 1 depends only on the excitation at the previous time t. \Rightarrow Causal $x(t) = 6 - y'(t+1) \Rightarrow$ Invertible

3. A system is described by y[n] - 1.8y[n-1] + 1.62y[n-2] = x[n]. Circle the correct properties for this system.

This equation is in the standard form for linear time invariant discrete-time systems therefore it is linear and time invariant. The eigenvalues are $0.9 \pm j0.9$ with magnitude $1.2728 > 1. \Rightarrow$ Unstable The response at time *n* depends on responses at previous times. \Rightarrow Dynamic The response at time *n* depends on responses at previous times. \Rightarrow Causal y[n] - 1.8 y[n-1] + 1.62 y[n-2] = x[n] So knowing y allows us to compute $x \Rightarrow$ Invertible If $h(t) = 7 \operatorname{ramp}(3t)$ and x(t) = 3u(t) and y(t) = x(t) * h(t) find these numerical values.

(a)
$$x(1) = 3$$
, $h(1) = 7 \operatorname{ramp}(3) = 21 \Rightarrow x(1)h(1) = 63$

(b)
$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau = 21\int_{-\infty}^{\infty} u(\tau)ramp(3(t-\tau))d\tau$$

 $y(t) = \begin{cases} 0, t < 0\\ 21\int_{0}^{t} 3(t-\tau)d\tau, t > 0 \end{cases} = \begin{cases} 0, t < 0\\ 21[3t\tau - (3/2)\tau^{2}]_{0}^{t}, t > 0 \end{cases} = \begin{cases} 0, t < 0\\ 31.5t^{2}, t > 0 \end{cases}$
 $y(1) = \begin{cases} 0, t < 0\\ 31.5(1)^{2}, t > 0 \end{cases} = 31.5$

Although this analytical solution is correct, it is probably easier to solve this problem graphically.

4.

5. If a discrete-time system is described by $y[n] = 3 \sum_{m=-\infty}^{n-3} x[m]$ graph its impulse response h[n] in the space provided. (Put a vertical scale on the graph so actual numerical values could be read.)

$$h[n] = 3\sum_{m=-\infty}^{n-3} \delta[m] = \begin{cases} 0 & , n < 3 \\ 3 & , n \ge 3 \end{cases} = 3u[n-3]$$

6. If a discrete-time system has an impulse response $h[n] = -5 \operatorname{ramp}[n-2]$ find its response to the excitation $x[n] = 2\delta[n+3] - 3\delta[n+1]$ and fill in the table below with numbers.

$$y[n] = x[n] * h[n] = -5 \operatorname{ramp}[n-2] * (2\delta[n+3] - 3\delta[n+1])$$
$$y[n] = -10 \operatorname{ramp}[n+1] + 15 \operatorname{ramp}[n-1]$$
$$n \quad 0 \quad 1 \quad 2 \quad 3$$

y[n] -10 -20 -15 -10

Solution of ECE 315 Test 2 Su09

In the system descriptions below x is always the excitation and y is always the response.

1. A system is described by $y[n+1] = \begin{cases} 4 & , x[n] > 3 \\ x[n] & , -1 \le x[n] < 4 \\ -1 & , x[n] < -1 \end{cases}$ Circle the correct properties for this system.

If
$$x[n] = 3$$
, $y[n+1] = 3$ and if $x[n] = 6$, $y[n+1] = 4$. Not homogeneous \Rightarrow Not Linear.
If $x_1[n] = g[n]$, then $y_1[n+1] = \begin{cases} 4 & , g[n] > 3 \\ g[n] & , -1 \le g[n] < 4 \\ -1 & , g[n] < -1 \end{cases}$
If $x_2[n] = g[n-n_0]$, then $y_2[n+1] = \begin{cases} 4 & , g[n-n_0] > 3 \\ g[n-n_0] & , -1 \le g[n-n_0] < 4 \\ -1 & , g[n-n_0] < -1 \end{cases}$

The response never exceeds 4 in magnitude, regardless of the excitation. \Rightarrow Stable The response at time n + 1 depends on the excitation at time n. \Rightarrow Dynamic The response at time n + 1 depends on the excitation at time n. \Rightarrow Causal If the response is 4 or -1 there is no way to know what the excitation is. \Rightarrow Not Invertible

2. A system is described by y'(t-1) + x(t) = 6. Circle the correct properties for this system.

If x(t) = 0, y'(t-1) = 6 and if x(t) = 2, y'(t-1) = 8. Not homogeneous \Rightarrow Not Linear. If $x_1(t) = g(t)$, then $y'_1(t-1) = 6 - g(t)$ If $x_2(t) = g(t-t_0)$, then $y'_2(t-1) = 6 - g(t-t_0) = y'_1(t-t_0-1) \Rightarrow$ Time Invariant If x(t) is a non-zero constant then y'(t-1) is also and y(t) is not bounded. \Rightarrow Unstable The response at time t-1 depends on the excitation at time t. \Rightarrow Dynamic The response at time t-1 depends on the excitation at future time t. \Rightarrow Non-Causal $x(t) = 6 - y'(t-1) \Rightarrow$ Invertible

3. A system is described by y[n] + 1.8y[n-1] + 1.62y[n-2] = x[n]. Circle the correct properties for this system.

This equation is in the standard form for linear time invariant discrete-time systems therefore it is linear and time invariant. The eigenvalues are $-0.9 \pm j0.9$ with magnitude $1.2728 > 1. \Rightarrow$ Unstable The response at time *n* depends on responses at previous times. \Rightarrow Dynamic The response at time *n* depends on responses at previous times. \Rightarrow Causal y[n]+1.8y[n-1]+1.62y[n-2]=x[n] So knowing y allows us to compute $x \Rightarrow$ Invertible 4. If $h(t) = 7 \operatorname{ramp}(2t)$ and x(t) = 5 u(t) and y(t) = x(t) * h(t) find these numerical values.

(a)
$$x(1)h(1) =$$

 $x(1) = 5$, $h(1) = 7 \operatorname{ramp}(2) = 14 \Rightarrow x(1)h(1) = 70$

(b)
$$y(1) =$$

 $y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau = 35\int_{-\infty}^{\infty} u(\tau)ramp(2(t-\tau))d\tau$
 $y(t) = \begin{cases} 0, t < 0\\ 35\int_{0}^{t} 2(t-\tau)d\tau, t > 0 \end{cases} = \begin{cases} 0, t < 0\\ 35[2t\tau-\tau^{2}]_{0}^{t}, t > 0 \end{cases} = \begin{cases} 0, t < 0\\ 35t^{2}, t > 0 \end{cases}$
 $y(1) = \begin{cases} 0, t < 0\\ 35(1)^{2}, t > 0 \end{cases} = 35$

Although this analytical solution is correct, it is probably easier to solve this problem graphically.

5. If a discrete-time system is described by $y[n] = -2\sum_{m=-\infty}^{n-5} x[m]$ graph its impulse response h[n] in the space provided. (Put a vertical scale on the graph so actual numerical values could be read.)

$$h[n] = -2\sum_{m=-\infty}^{n-5} \delta[m] = \begin{cases} 0, & n < 5\\ -2, & n \ge 5 \end{cases} = -2u[n-5]$$

6. If a discrete-time system has an impulse response h[n] = -3ramp[n-1] find its response to the excitation $x[n] = \delta[n+3] - 2\delta[n+1]$ and fill in the table below with numbers.