Solution of ECE 315 Test 1 F06

1. A discrete-time system is described by the difference equation

$$7 y[n] - 3y[n-1] + y[n-2] = 11$$
.

(a) The eigenvalues of this difference equation can be expressed in the polar form $Ae^{j\theta}$ where A is the magnitude and θ is the angle or phase. Find the numerical values of A and θ .

 $A = \underline{0.378} \qquad \theta = \underline{0.968} \text{ (radians)}$

A = 0.378 $\theta = -0.968$ (radians)

The characteristic equation is $7\alpha^2 - 3\alpha + 1 = 0$. The eigenvalues are the solutions to this equation which

$$\frac{3\pm\sqrt{9-28}}{14} = \frac{3\pm j\sqrt{19}}{14} = 0.2143\pm j0.3113 = 0.378e^{\pm j0.968} \,.$$

(b) The homogeneous solution approaches zero as $n \to \infty$. What numerical value does y[n] approach as $n \to \infty$?

$$y[\infty] = \underline{2.2}$$

are

Since the forcing function is a constant the forced solution is also a constant K. Therefore

 $7K - 3K + K = 11 \Rightarrow K = 2.2$ and the final value of y is also 2.2.

- 2. A complex number z has five fifth roots, $\{z_1, z_2, z_3, z_4, z_5\}$ and $z_1 = Ae^{j3\pi/4}$.
 - (a) The number z can be expressed in the rectangular form z = x + jy. Find the value of x and y in terms of the unknown A.

$$x = 0.707A^5$$
, $y = -0.707A^5$

$$z = z_1^5 = (Ae^{j3\pi/4})^5 = A^5 e^{j15\pi/4} = A^5 e^{-j\pi/4} e^{j16\pi/4} = A^5 \cos(-\pi/4) + jA^5 \sin(-\pi/4) = 0.707A^5 - j0.707A^5$$
$$x = 0.707A^5 \text{ and } y = -0.707A^5$$

(b) The other four roots $\{z_2, z_3, z_4, z_5\}$ can be expressed in the polar form $Ae^{j\theta}$. Find the numerical values of the angles θ of the other four roots (all in radians).

 $\theta = 3.6128$, 4.8695, 6.1261, 7.3827

The spacing between the roots must be $2\pi/5$ radians. So the angles of the other four roots are

$$3\pi / 4 + 2\pi / 5 = 23\pi / 20 = 3.6128$$
 or -2.6074 or

 $3\pi / 4 + 4\pi / 5 = 31\pi / 20 = 4.8695$ or -1.4137 or

 $3\pi / 4 + 6\pi / 5 = 39\pi / 20 = 6.1261$ or -0.1571 or

 $3\pi / 4 + 8\pi / 5 = 47\pi / 20 = 7.3827$ or 1.0996 or -5.1836 or

Solution of ECE 315 Test 1 F06

1. A discrete-time system is described by the difference equation

$$8y[n] - 2y[n-1] + y[n-2] = 11$$
.

(a) The eigenvalues of this difference equation can be expressed in the polar form $Ae^{j\theta}$ where A is the magnitude and θ is the angle or phase. Find the numerical values of A and θ .

A = 0.3536 $\theta = 1.2094$ (radians)

A = 0.3536 $\theta = -1.2094$ (radians)

The characteristic equation is $8\alpha^2 - 2\alpha + 1 = 0$. The eigenvalues are the solutions to this equation which

$$\frac{2 \pm \sqrt{4 - 32}}{16} = \frac{2 \pm j2\sqrt{7}}{16} = 0.125 \pm j0.3307 = 0.3536e^{\pm j1.2094}$$

(b) The homogeneous solution approaches zero as $n \to \infty$. What numerical value does y[n] approach as $n \to \infty$?

 $y[\infty] = 1.5714$

are

Since the forcing function is a constant the forced solution is also a constant K. Therefore

 $8K - 2K + K = 11 \Rightarrow K = 11/7 = 1.5714$ and the final value of y is also 1.5714.

- 2. A complex number z has five fifth roots, $\{z_1, z_2, z_3, z_4, z_5\}$ and $z_1 = Ae^{j3\pi/8}$.
 - (a) The number z can be expressed in the rectangular form z = x + jy. Find the value of x and y in terms of the unknown A.

$$x = 0.9239A^5$$
, $y = -0.3827A^5$

$$z = z_1^5 = \left(Ae^{j3\pi/8}\right)^5 = A^5 e^{j15\pi/8} = A^5 e^{-j\pi/8} e^{j16\pi/8} = A^5 \cos(-\pi/8) + jA^5 \sin(-\pi/8) = 0.9239A^5 - j0.3827A^5$$
$$x = 0.9239A^5 \text{ and } y = -0.3827A^5$$

(b) The other four roots $\{z_2, z_3, z_4, z_5\}$ can be expressed in the polar form $Ae^{j\theta}$. Find the numerical values of the angles θ of the other four roots (all in radians).

 $\theta=\underline{2.4347}$, $\underline{3.6914}$, $\underline{4.948}$, $\underline{6.2046}$

The spacing between the roots must be $2\pi/5$ radians. So the angles of the other four roots are

 $3\pi / 8 + 2\pi / 5 = 31\pi / 40 = 2.4347$ or -3.8485 or

 $3\pi / 8 + 4\pi / 5 = 47\pi / 40 = 3.6914$ or -2.5918 or

 $3\pi / 8 + 6\pi / 5 = 63\pi / 40 = 4.948$ or -1.3352 or

 $3\pi/8 + 8\pi/5 = 79\pi/40 = 6.2046$ or -0.0785 or -6.3617 or

Solution of ECE 315 Test 1 F06

1. A discrete-time system is described by the difference equation

$$8y[n] - 3y[n-1] + 2y[n-2] = 14$$

(a) The eigenvalues of this difference equation can be expressed in the polar form $Ae^{j\theta}$ where A is the magnitude and θ is the angle or phase. Find the numerical values of A and θ .

A = 0.5 $\theta = 1.1864$ (radians)

A = 0.5 $\theta = -1.1864$ (radians)

The characteristic equation is $8\alpha^2 - 3\alpha + 2 = 0$. The eigenvalues are the solutions to this equation which

$$\frac{3 \pm \sqrt{9 - 64}}{16} = \frac{3 \pm j\sqrt{55}}{16} = 0.1875 \pm j0.4635 = 0.5e^{\pm j1.1864} \,.$$

(b) The homogeneous solution approaches zero as $n \to \infty$. What numerical value does y[n] approach as $n \to \infty$?

 $y[\infty] = \underline{2}$

are

Since the forcing function is a constant the forced solution is also a constant K. Therefore

 $8K - 3K + 2K = 14 \implies K = 14 / 7 = 2$ and the final value of y is also 2.

- 2. A complex number *z* has five fifth roots, $\{z_1, z_2, z_3, z_4, z_5\}$ and $z_1 = Ae^{-j3\pi/8}$.
 - (a) The number z can be expressed in the rectangular form z = x + jy. Find the value of x and y in terms of the unknown A.

$$x = 0.9239A^5$$
, $y = 0.3827A^5$

$$z = z_1^5 = \left(Ae^{-j3\pi/8}\right)^5 = A^5 e^{-j15\pi/8} = A^5 e^{j\pi/8} e^{-j16\pi/8} = A^5 \cos(\pi/8) + jA^5 \sin(\pi/8) = 0.9239A^5 + j0.3827A^5$$
$$x = 0.9239A^5 \text{ and } y = 0.3827A^5$$

(b) The other four roots $\{z_2, z_3, z_4, z_5\}$ can be expressed in the polar form $Ae^{j\theta}$. Find the numerical values of the angles θ of the other four roots (all in radians).

 $\theta=\underline{0.0785}$, $\underline{1.3352}$, $\underline{2.5918}$, $\underline{3.8485}$

The spacing between the roots must be $2\pi/5$ radians. So the angles of the other four roots are

 $-3\pi / 8 + 2\pi / 5 = \pi / 40 = 0.0785 \text{ or } -6.2046 \text{ or}$ $-3\pi / 8 + 4\pi / 5 = 17\pi / 40 = 1.3352 \text{ or } -4.948 \text{ or}$ $-3\pi / 8 + 6\pi / 5 = 33\pi / 40 = 2.5918 \text{ or } -3.6914 \text{ or}$

 $-3\pi / 8 + 8\pi / 5 = 49\pi / 40 = 3.8485$ or -2.4347 or