Solution of 315 Test 12 F07

1. If $x[n] = n^2(u[n] - u[n-3])$ and $x[n] \xleftarrow{F} X(F)$, what is the numerical value of X(0) ? $X(0) = _$

$$X(F) = \sum_{n=-\infty}^{\infty} x[n] e^{-j2\pi Fn} \Longrightarrow X(0) = \sum_{n=-\infty}^{\infty} x[n] = \sum_{n=-\infty}^{\infty} n^2 (u[n] - u[n-3])$$
$$X(0) = \sum_{n=0}^{2} n^2 = 0 + 1 + 4 = 5$$

2. If $X(F) = 3[\delta_1(F-1/4) + \delta_1(F+1/4)] - j4[\delta_1(F+1/9) - \delta(F-1/9)]$ and $x[n] \xleftarrow{F} X(F)$, what is the numerical fundamental period of x[n]? $N_0 =$ ______

$$x[n] = 6\cos(2\pi n / 4) - 8\sin(2\pi n / 9)$$

The fundamental period of x[n] is the least common multiple of the fundamental periods of the sine and cosine which are added to form it. The least common multiple of 4 and 9 is 36.

3. If
$$x[n] = tri(n/3)$$
 and $x_p[n] = x[n] * \delta_{10}[n]$ and $x_p[n] \xleftarrow{\text{FS}} X_p[k]$, what is the numerical value of $X_p[0]$? $X_p[0] = _$

 $X_p[0]$ is the average value of $x_p[n]$. The average value of any periodic signal is the sum of the impulse strengths in one period, divided by the period. In this case

$$X_{p}[0] = \frac{1}{10} \sum_{n=-5}^{4} \operatorname{tri}(n/3) = \frac{1}{10} \sum_{n=-3}^{3} \operatorname{tri}(n/3) = \frac{0 + 1/3 + 2/3 + 1 + 2/3 + 1/3 + 0}{10} = 0.3$$

Solution of 315 Test 12 F07

1. If $x[n] = n^2(u[n] - u[n-4])$ and $x[n] \xleftarrow{F} X(F)$, what is the numerical value of X(0) ? $X(0) = _$

$$X(F) = \sum_{n=-\infty}^{\infty} x[n] e^{-j2\pi Fn} \Rightarrow X(0) = \sum_{n=-\infty}^{\infty} x[n] = \sum_{n=-\infty}^{\infty} n^2 (u[n] - u[n-3])$$
$$X(0) = \sum_{n=0}^{3} n^2 = 0 + 1 + 4 + 9 = 14$$

2. If $X(F) = 3[\delta_1(F-1/7) + \delta_1(F+1/7)] - j4[\delta_1(F+1/9) - \delta(F-1/9)]$ and $x[n] \xleftarrow{F} X(F)$, what is the numerical fundamental period of x[n]? $N_0 =$ ______

$$x[n] = 6\cos(2\pi n / 7) - 8\sin(2\pi n / 9)$$

The fundamental period of x[n] is the least common multiple of the fundamental periods of the sine and cosine which are added to form it. The least common multiple of 7 and 9 is 63.

3. If
$$x[n] = tri(n/3)$$
 and $x_p[n] = x[n] * \delta_8[n]$ and $x_p[n] \xleftarrow{\text{FS}} X_p[k]$, what is the numerical value of $X_p[0]$? $X_p[0] = \underline{\qquad}$

 $X_p[0]$ is the average value of $x_p[n]$. The average value of any periodic signal is the sum of the impulse strengths in one period, divided by the period. In this case

$$X_{p}[0] = \frac{1}{8} \sum_{n=-5}^{4} \operatorname{tri}(n/3) = \frac{1}{8} \sum_{n=-3}^{3} \operatorname{tri}(n/3) = \frac{0+1/3+2/3+1+2/3+1/3+0}{8} = 3/8 = 0.375$$

Solution of 315 Test 12 F07

1. If $x[n] = n^2(u[n] - u[n-5])$ and $x[n] \xleftarrow{F} X(F)$, what is the numerical value of X(0) ? $X(0) = _$

$$X(F) = \sum_{n=-\infty}^{\infty} x[n] e^{-j2\pi Fn} \Rightarrow X(0) = \sum_{n=-\infty}^{\infty} x[n] = \sum_{n=-\infty}^{\infty} n^2 (u[n] - u[n-5])$$
$$X(0) = \sum_{n=0}^{4} n^2 = 0 + 1 + 4 + 9 + 16 = 30$$

2. If $X(F) = 3[\delta_1(F-1/4) + \delta_1(F+1/4)] - j4[\delta_1(F+1/7) - \delta(F-1/7)]$ and $x[n] \xleftarrow{F} X(F)$, what is the numerical fundamental period of x[n]? $N_0 =$ ______

$$x[n] = 6\cos(2\pi n / 4) - 8\sin(2\pi n / 7)$$

The fundamental period of x[n] is the least common multiple of the fundamental periods of the sine and cosine which are added to form it. The least common multiple of 4 and 7 is 28.

3. If
$$x[n] = tri(n/3)$$
 and $x_p[n] = x[n] * \delta_{12}[n]$ and $x_p[n] \xleftarrow{\text{FS}} X_p[k]$, what is the numerical value of $X_p[0]$? $X_p[0] = _$

 $X_p[0]$ is the average value of $x_p[n]$. The average value of any periodic signal is the sum of the impulse strengths in one period, divided by the period. In this case

$$X_{p}[0] = \frac{1}{12} \sum_{n=-5}^{4} \operatorname{tri}(n/3) = \frac{1}{12} \sum_{n=-3}^{3} \operatorname{tri}(n/3) = \frac{0 + 1/3 + 2/3 + 1 + 2/3 + 1/3 + 0}{12} = 0.25$$