Solution of EECS 315 Test 11 F13

1. If $x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(f) = \frac{5}{j2\pi f + 15}$ and y(t) = x(3t) and $y(t) \stackrel{\mathcal{F}}{\longleftrightarrow} Y(f)$, what are the numerical magnitude and phase (in radians) of Y(6)?

$$|Y(6)| = \underline{\hspace{1cm}}$$
 $\angle Y(6) = \underline{\hspace{1cm}}$ radians

$$Y(f) = \frac{1}{3}X\left(\frac{f}{3}\right) = \frac{1}{3}\frac{5}{j2\pi f/3 + 15} = \frac{5}{j2\pi f + 45} \Rightarrow Y(6) = \frac{5}{j12\pi + 45} = 0.0852 \angle -0.697 \text{ radians}$$

2. If $x(t) = \delta_{T_0}(t) * rect(t/4)$ and $x(t) \xleftarrow{\mathcal{F}} X(f)$ find three different numerical values of T_0 for which $X(f) = A\delta(f)$ and the corresponding numerical impulse strengths A.

$$T_0 = \underline{\hspace{1cm}} A = \underline{\hspace{1cm}}$$

$$T_0 = \underline{\hspace{1cm}} A = \underline{\hspace{1cm}}$$

$$T_0 = \underline{\hspace{1cm}} A = \underline{\hspace{1cm}}$$

$$\mathbf{x}(t) = \delta_{T_0}(t) * \operatorname{rect}(t/4) \longleftrightarrow \mathbf{X}(f) = (1/T_0)\delta_{1/T_0}(f) 4 \operatorname{sinc}(4f)$$

If T_0 is chosen to make the impulses in X(f) all fall at integer values of 4f then all the impulses in the periodic impulse, except the one at 4f=0, will have zero strength. The integer values of 4f are integer multiples of 1/4. So $1/T_0$ should be an integer multiple of 1/4. In general $1/T_0=k/4$, k an integer, implying that $T_0=4/k$, k an integer, with a corresponding impulse strength of k. The simplest answers are

$$T_0 = 4$$
 $A = 1$

$$T_0 = 2$$
 $A = 2$

$$T_0 = 1$$
 $A = 4$

but there are infinitely many other correct answers.

3. An LTI continuous-time system has a frequency response $H(f) = \frac{1500}{j8f + 1000}$. It is excited by a signal whose Fourier transform is $X(f) = \sum_{k=-\infty}^{\infty} \mathrm{sinc} \left(\frac{k}{12}\right) \delta(f-120k)$. The Fourier transform of the system response is Y(f). Find the numerical magnitude and phase (in radians) of the strength of the impulse in Y(f) occurring at f = 480 Hz.

Impulse strength magnitude = _____ radians

$$Y(f) = X(f)H(f) = \frac{1500}{j8f + 1000} \sum_{k=-\infty}^{\infty} \text{sinc}\left(\frac{k}{12}\right) \delta(f - 120k)$$

$$Y(480) = \frac{1500}{j8 \times 480 + 1000} \operatorname{sinc}\left(\frac{4}{12}\right) \delta(f - 480)$$

Impulse Strength = $\frac{1500}{j3840 + 1000} \operatorname{sinc}(1/3) = 0.3126 \angle -1.316 \text{ radians}$

Solution of EECS 315 Test 11 F13

1. If
$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(f) = \frac{13}{j2\pi f + 7}$$
 and $y(t) = x(3t)$ and $y(t) \stackrel{\mathcal{F}}{\longleftrightarrow} Y(f)$, what are the numerical magnitude and phase (in radians) of $Y(6)$?

$$|Y(6)| = \underline{\hspace{1cm}}$$
 radians

$$Y(f) = \frac{1}{3}X\left(\frac{f}{3}\right) = \frac{1}{3}\frac{13}{j2\pi f/3 + 7} = \frac{13}{j2\pi f + 21} \Rightarrow Y(6) = \frac{13}{j12\pi + 21} = 0.30125 \angle -1.0626 \text{ radians}$$

2. If $x(t) = \delta_{T_0}(t) * rect(t/6)$ and $x(t) \xleftarrow{\mathscr{S}} X(f)$ find three different numerical values of T_0 for which $X(f) = A\delta(f)$ and the corresponding numerical impulse strengths A.

$$T_0 = \underline{\hspace{1cm}} A = \underline{\hspace{1cm}}$$

$$T_0 = \underline{\hspace{1cm}} A = \underline{\hspace{1cm}}$$

$$T_0 = \underline{\hspace{1cm}} A = \underline{\hspace{1cm}}$$

$$\mathbf{x}(t) = \delta_{T_0}(t) * \operatorname{rect}(t/6) \longleftrightarrow \mathbf{X}(f) = (1/T_0) \delta_{1/T_0}(f) 6 \operatorname{sinc}(6f)$$

If T_0 is chosen to make the impulses in X(f) all fall at integer values of 6f then all the impulses in the periodic impulse, except the one at 6f=0, will have zero strength. The integer values of 6f are integer multiples of 1/6. So $1/T_0$ should be an integer multiple of 1/6. In general $1/T_0=k/6$, k an integer, implying that $T_0=6/k$, k an integer, with a corresponding impulse strength of k. The simplest answers

$$T_0 = 6$$
 $A = 1$

$$T_0 = 3$$
 $A = 2$

$$T_0 = 3/2$$
 $A = 4$

but there are infinitely many other correct answers.

3. An LTI continuous-time system has a frequency response $H(f) = \frac{1500}{j8f + 2000}$. It is excited by a signal whose Fourier transform is $X(f) = \sum_{k=-\infty}^{\infty} \mathrm{sinc} \left(\frac{k}{12}\right) \delta(f-120k)$. The Fourier transform of the system response is Y(f). Find the numerical magnitude and phase (in radians) of the strength of the impulse in Y(f) occurring at $f = 480~\mathrm{Hz}$.

Impulse strength magnitude = _____ radians

$$Y(f) = X(f)H(f) = \frac{1500}{j8f + 2000} \sum_{k=-\infty}^{\infty} \text{sinc}\left(\frac{k}{12}\right) \delta(f - 120k)$$

$$Y(480) = \frac{1500}{j8 \times 480 + 2000} \operatorname{sinc}\left(\frac{4}{12}\right) \delta(f - 480)$$

Impulse Strength = $\frac{1500}{j3840 + 2000}$ sinc $(1/3) = 0.2865 \angle -1.0906$ radians

Solution of EECS 315 Test 11 F13

1. If
$$x(t) \stackrel{\mathscr{F}}{\longleftrightarrow} X(f) = \frac{82}{j2\pi f + 11}$$
 and $y(t) = x(3t)$ and $y(t) \stackrel{\mathscr{F}}{\longleftrightarrow} Y(f)$, what are the numerical magnitude and phase (in radians) of $Y(6)$?

$$|Y(6)| = \underline{\hspace{1cm}}$$
 radians

$$Y(f) = \frac{1}{3}X\left(\frac{f}{3}\right) = \frac{1}{3}\frac{82}{j2\pi f/3 + 11} = \frac{82}{j2\pi f + 33} \Rightarrow Y(6) = \frac{82}{j12\pi + 33} = 1.6367 \angle -0.8518 \text{ radians}$$

2. If $x(t) = \delta_{T_0}(t) * rect(t/10)$ and $x(t) \xleftarrow{g} X(f)$ find three different numerical values of T_0 for which $X(f) = A\delta(f)$ and the corresponding numerical impulse strengths A.

$$T_0 = \underline{\hspace{1cm}} A = \underline{\hspace{1cm}}$$

$$T_0 = \underline{\hspace{1cm}} A = \underline{\hspace{1cm}}$$

$$T_0 = \underline{\hspace{1cm}} A = \underline{\hspace{1cm}}$$

$$\mathbf{x}(t) = \delta_{T_0}(t) * \operatorname{rect}(t/10) \longleftrightarrow \mathbf{X}(f) = (1/T_0)\delta_{1/T_0}(f) \cdot 10 \operatorname{sinc}(10f)$$

If T_0 is chosen to make the impulses in X(f) all fall at integer values of 10f then all the impulses in the periodic impulse, except the one at 10f=0, will have zero strength. The integer values of 10f are integer multiples of 1/10. So $1/T_0$ should be an integer multiple of 1/10. In general, implying that $T_0=10/k$, k an integer, with a corresponding impulse strength of k. The simplest answers are

$$T_0 = 10$$
 $A = 1$

$$T_0 = 5$$
 $A = 2$

$$T_0 = 5/2$$
 $A = 4$

but there are infinitely many other correct answers.

3. An LTI continuous-time system has a frequency response $H(f) = \frac{1500}{j8f + 3000}$. It is excited by a signal whose Fourier transform is $X(f) = \sum_{k=-\infty}^{\infty} \mathrm{sinc} \left(\frac{k}{12}\right) \delta(f-120k)$. The Fourier transform of the system response is Y(f). Find the numerical magnitude and phase (in radians) of the strength of the impulse in Y(f) occurring at $f = 480~\mathrm{Hz}$.

Impulse strength magnitude = _____ radians

$$Y(f) = X(f)H(f) = \frac{1500}{j8f + 3000} \sum_{k=-\infty}^{\infty} \text{sinc}\left(\frac{k}{12}\right) \delta(f - 120k)$$

$$Y(480) = \frac{1500}{j8 \times 480 + 3000} \operatorname{sinc}\left(\frac{4}{12}\right) \delta(f - 480)$$

Impulse Strength = $\frac{1500}{j3840 + 3000}$ sinc(1/3) = 0.2546 \angle - 0.9076 radians