Solution ofEECS 315 Test 11 F13

1. If $x(t) \leftarrow \frac{\mathcal{F}}{\mathcal{F}} \rightarrow X(f) = \frac{5}{j2\pi f + 15}$ and $y(t) = x(3t)$ and $y(t) \leftarrow \frac{\mathcal{F}}{\mathcal{F}} \rightarrow Y(f)$, what are the numerical magnitude and phase (in radians) of $Y(6)$?

$$
|Y(6)| = \underline{\hspace{1cm}} \angle Y(6) = \underline{\hspace{1cm}} \text{radians}
$$

$$
Y(f) = \frac{1}{3}X\left(\frac{f}{3}\right) = \frac{1}{3}\frac{5}{j2\pi f/3 + 15} = \frac{5}{j2\pi f + 45} \Rightarrow Y(6) = \frac{5}{j12\pi + 45} = 0.0852\angle -0.697 \text{ radians}
$$

2. If $x(t) = \delta_{T_0}(t) * \text{rect}(t/4)$ and $x(t) \leftarrow f \rightarrow X(f)$ find three different numerical values of T_0 for which $X(f) = A\delta(f)$ and the corresponding numerical impulse strengths A.

$$
T_0 = \underline{\hspace{1cm}} \underline{A} = \underline{\hspace{1cm}}
$$
\n
$$
T_0 = \underline{\hspace{1cm}} \underline{A} = \underline{\hspace{1cm}}
$$
\n
$$
T_0 = \underline{\hspace{1cm}} \underline{A} = \underline{\hspace{1cm}}
$$
\n
$$
A = \underline{\hspace{1cm}}
$$

If T_0 is chosen to make the impulses in $X(f)$ all fall at integer values of $4f$ then all the impulses in the periodic impulse, except the one at $4f = 0$, will have zero strength. The integer values of $4f$ are integer multiples of 1/4. So $1/T_0$ should be an integer multiple of 1/4. In general $1/T_0 = k/4$, *k* an integer, implying that $T_0 = 4/k$, *k* an integer, with a corresponding impulse strength of *k*. The simplest answers are

$$
T_0 = 4
$$
 $A = 1$
\n $T_0 = 2$ $A = 2$
\n $T_0 = 1$ $A = 4$

but there are infinitely many other correct answers.

3. An LTI continuous-time system has a frequency response $H(f) = \frac{1500}{j8f + 1000}$. It is excited by a signal whose Fourier transform is $X(f) = \sum_{k=-\infty}^{\infty} \operatorname{sinc} \left(\frac{k}{12} \right)$ ⎛ $\sum_{k=-\infty}^{\infty} \operatorname{sinc}\left(\frac{k}{12}\right) \delta(f-120k)$ $\sum_{n=1}^{\infty} \operatorname{sinc} \left(\frac{k}{12} \right) \delta(f-120k)$. The Fourier transform of the system response is $Y(f)$. Find the numerical magnitude and phase (in radians) of the strength of the impulse in $Y(f)$ occurring at $f = 480$ Hz.

Impulse strength magnitude = _______________ Impulse strength phase = ______________ radians

 $Y(f) = X(f)H(f) = \frac{1500}{j8f + 1000} \sum_{k=-\infty}^{\infty} \text{sinc}\left(\frac{k}{12}\right)$ $\sqrt{2}$ $\sum_{k=-\infty}^{\infty} \operatorname{sinc}\left(\frac{k}{12}\right) \delta\left(f - 120k\right)$ \sum^{∞} $Y(480) = {1500 \over j8 \times 480 + 1000} \text{sinc} \left({4 \over 12} \right)$ 12 ⎛ $\left(\frac{4}{12}\right) \delta(f-480)$ Impulse Strength = $\frac{1500}{j3840 + 1000}$ sinc(1/3) = 0.3126 \angle -1.316 radians

Solution ofEECS 315 Test 11 F13

1. If $x(t) \leftarrow \frac{s}{f}$ \rightarrow $X(f) = \frac{13}{f^2 \pi f + 7}$ and $y(t) = x(3t)$ and $y(t) \leftarrow \frac{s}{f}$ \rightarrow $Y(f)$, what are the numerical magnitude and phase (in radians) of $Y(6)$?

$$
|Y(6)| = \underline{\hspace{1cm}} \angle Y(6) = \underline{\hspace{1cm}} \text{radians}
$$

$$
Y(f) = \frac{1}{3}X\left(\frac{f}{3}\right) = \frac{1}{3}\frac{13}{j2\pi f/3 + 7} = \frac{13}{j2\pi f + 21} \Rightarrow Y(6) = \frac{13}{j12\pi + 21} = 0.30125\angle -1.0626 \text{ radians}
$$

2. If $x(t) = \delta_{T_0}(t) * \text{rect}(t/6)$ and $x(t) \leftarrow f \rightarrow X(f)$ find three different numerical values of T_0 for which $X(f) = A\delta(f)$ and the corresponding numerical impulse strengths *A*.

$$
T_0 = \underline{\hspace{1cm}} A = \underline{\hspace{1cm}}
$$

\n
$$
T_0 = \underline{\hspace{1cm}} A = \underline{\hspace{1cm}}
$$

\n
$$
T_0 = \underline{\hspace{1cm}} A = \underline{\hspace{1cm}}
$$

\n
$$
A = \underline{\hspace{1cm}}
$$

If T_0 is chosen to make the impulses in $X(f)$ all fall at integer values of 6f then all the impulses in the periodic impulse, except the one at $6f = 0$, will have zero strength. The integer values of $6f$ are integer multiples of 1/6. So $1/T_0$ should be an integer multiple of 1/6. In general $1/T_0 = k/6$, *k* an integer, implying that $T_0 = 6/k$, *k* an integer, with a corresponding impulse strength of *k*. The simplest answers are

$$
T_0 = 6
$$
 $A = 1$
\n $T_0 = 3$ $A = 2$
\n $T_0 = 3/2$ $A = 4$

but there are infinitely many other correct answers.

3. An LTI continuous-time system has a frequency response $H(f) = \frac{1500}{j8f + 2000}$. It is excited by a signal whose Fourier transform is $X(f) = \sum_{k=-\infty}^{\infty} \operatorname{sinc} \left(\frac{k}{12} \right)$ ⎛ $\sum_{k=-\infty}^{\infty} \operatorname{sinc}\left(\frac{k}{12}\right) \delta(f-120k)$ $\sum_{n=1}^{\infty} \operatorname{sinc} \left(\frac{k}{12} \right) \delta(f-120k)$. The Fourier transform of the system response is $Y(f)$. Find the numerical magnitude and phase (in radians) of the strength of the impulse in $Y(f)$ occurring at $f = 480$ Hz.

Impulse strength magnitude = _______________ Impulse strength phase = ______________ radians

$$
Y(f) = X(f)H(f) = \frac{1500}{j8f + 2000} \sum_{k=-\infty}^{\infty} \text{sinc}\left(\frac{k}{12}\right) \delta(f - 120k)
$$

$$
Y(480) = \frac{1500}{j8 \times 480 + 2000} \text{sinc}\left(\frac{4}{12}\right) \delta(f - 480)
$$
Impulse Strength =
$$
\frac{1500}{j3840 + 2000} \text{sinc}\left(1/3\right) = 0.2865 \measuredangle -1.0906 \text{ radians}
$$

Solution ofEECS 315 Test 11 F13

1. If $x(t) \leftarrow \frac{s}{\sqrt{2\pi f + 11}}$ and $y(t) = x(3t)$ and $y(t) \leftarrow \frac{s}{\sqrt{2\pi f + 11}}$ and $y(t) \leftarrow \frac{s}{\sqrt{2\pi f + 11}}$ magnitude and phase (in radians) of $Y(6)$?

$$
|Y(6)| = \underline{\hspace{1cm}} \angle Y(6) = \underline{\hspace{1cm}} \text{radians}
$$

$$
Y(f) = \frac{1}{3}X\left(\frac{f}{3}\right) = \frac{1}{3}\frac{82}{j2\pi f/3 + 11} = \frac{82}{j2\pi f + 33} \Rightarrow Y(6) = \frac{82}{j12\pi + 33} = 1.6367\angle -0.8518 \text{ radians}
$$

2. If $x(t) = \delta_{T_0}(t) * \text{rect}(t/10)$ and $x(t) \leftarrow \mathcal{F} \rightarrow X(f)$ find three different numerical values of T_0 for which $X(f) = A\delta(f)$ and the corresponding numerical impulse strengths *A*.

$$
T_0 = \underline{\hspace{1cm}} A = \underline{\hspace{1cm}}
$$

\n
$$
T_0 = \underline{\hspace{1cm}} A = \underline{\hspace{1cm}}
$$

\n
$$
T_0 = \underline{\hspace{1cm}} A = \underline{\hspace{1cm}}
$$

\n
$$
A = \underline{\hspace{1cm}}
$$

If T_0 is chosen to make the impulses in $X(f)$ all fall at integer values of $10f$ then all the impulses in the periodic impulse, except the one at $10 f = 0$, will have zero strength. The integer values of $10 f$ are integer multiples of $1/10$. So $1/T_0$ should be an integer multiple of $1/10$. In general, implying that $T_0 = 10/k$, *k* an integer, with a corresponding impulse strength of *k*. The simplest answers are

$$
T_0 = 10
$$
 $A = 1$
\n $T_0 = 5$ $A = 2$
\n $T_0 = 5/2$ $A = 4$

but there are infinitely many other correct answers.

3. An LTI continuous-time system has a frequency response $H(f) = \frac{1500}{j8f + 3000}$. It is excited by a signal whose Fourier transform is $X(f) = \sum_{k=-\infty}^{\infty} \operatorname{sinc} \left(\frac{k}{12} \right)$ ⎛ $\sum_{k=-\infty}^{\infty} \operatorname{sinc}\left(\frac{k}{12}\right) \delta(f-120k)$ $\sum_{n=1}^{\infty} \operatorname{sinc} \left(\frac{k}{12} \right) \delta(f-120k)$. The Fourier transform of the system response is $Y(f)$. Find the numerical magnitude and phase (in radians) of the strength of the impulse in $Y(f)$ occurring at $f = 480$ Hz.

Impulse strength magnitude = _______________ Impulse strength phase = ______________ radians

$$
Y(f) = X(f)H(f) = \frac{1500}{j8f + 3000} \sum_{k=-\infty}^{\infty} \text{sinc}\left(\frac{k}{12}\right) \delta(f - 120k)
$$

$$
Y(480) = \frac{1500}{j8 \times 480 + 3000} \text{sinc}\left(\frac{4}{12}\right) \delta(f - 480)
$$
Impulse Strength =
$$
\frac{1500}{j3840 + 3000} \text{sinc}\left(1/3\right) = 0.2546 \measuredangle -0.9076 \text{ radians}
$$