Solution of ECE 315 Test 2 F06

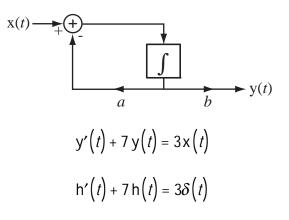
1. A system is described by the equation $y[n] = e^{x[n]}$ in which x is the excitation and y is the response. Identify its properties by circling the appropriate answer, Yes or No.

Linear	Yes	No	Time Invariant	Yes	No
Stable	Yes	No	Dynamic	Yes	No
Causal	Yes	No	Invertible	Yes	No

- 2. In the system below a = 7 and b = 3.
 - (a) Write the differential equation describing it.

$$(1/3)y'(t) = x(t) - (7/3)y(t)$$

(b) The impulse response can be written in the form $h(t) = Ke^{\lambda t} u(t)$. Find the numerical values of *K* and λ . $K = \underline{3}, \lambda = \underline{-7}$



Eigenvalue $\lambda = -7$. Integrating once through zero.

$$\underbrace{h(0^{+})}_{=\mathcal{K}} - \underbrace{h(0^{-})}_{=0} + 7 \underbrace{\int_{0^{-}}^{0^{+}} h(t) dt}_{=0} = 3 \left[\underbrace{u(0^{+})}_{=1} - \underbrace{u(0^{-})}_{=0} \right] \Rightarrow \mathcal{K} = 3$$

3. If y(t) = x(t) * h(t) and $x(t) = 4 \operatorname{rect}(t-1)$ and $h(t) = 3\operatorname{rect}(t)$, what is the numerical value of y(1/2)? y(1/2) = 6

$$\mathbf{y}(t) = \int_{-\infty}^{\infty} \mathbf{x}(\tau) \mathbf{h}(t-\tau) d\tau = \int_{-\infty}^{\infty} 4 \operatorname{rect}(\tau-1) \operatorname{3rect}(t-\tau) d\tau$$

$$y(1/2) = 12\int_{-\infty}^{\infty} \operatorname{rect}(\tau-1)\operatorname{rect}(1/2-\tau)d\tau = 12\int_{-\infty}^{\infty} \operatorname{rect}(\tau-1)\operatorname{rect}(\tau-1/2)d\tau$$

rect $(\tau - 1)$ is 1 between 1/2 and 3/2 and zero elsewhere rect $(\tau - 1/2)$ is 1 between 0 and 1 and zero elsewhere \therefore rect $(\tau - 1)$ rect $(\tau - 1/2)$ is 1 between 1/2 and 1 and zero elsewhere

$$y(1/2) = 12\int_{1/2}^{1} d\tau = 6$$

4. If y[n] = x[n] * h[n] and x[n] = ramp[n] and $h[n] = 2\delta[n] - 3\delta[n-4]$, what is the numerical value of y[10]? y[10] = 2

$$y[n] = \operatorname{ramp}[n] * (2\delta[n] - 3\delta[n-4])$$
$$y[n] = 2\operatorname{ramp}[n] * \delta[n] - 3\operatorname{ramp}[n] * \delta[n-4]$$
$$y[n] = 2\operatorname{ramp}[n] - 3\operatorname{ramp}[n-4]$$
$$y[10] = 2\operatorname{ramp}[10] - 3\operatorname{ramp}[6] = 20 - 18 = 2$$

5. A system with an impulse response $h_1[n] = a^n u[n]$ is cascade connected with a second system with impulse response $h_2[n] = b^n u[n]$. If a = 1/2 and b = 2/3, and h[n] is the impulse response of the overall cascade-connected system what is the numerical value of h[3]? h[3] = 0.8102

$$\begin{bmatrix} \sum_{n=0}^{N-1} r^n = \begin{cases} N & , r=1\\ \frac{1-r^N}{1-r} & , r\neq 1 \end{bmatrix}$$

$$h[n] = h_1[n] * h_2[n] = \sum_{m=-\infty}^{\infty} a^m u[m] b^{n-m} u[n-m]$$

$$h[n] = b^n \sum_{m=0}^n a^m b^{-m} = b^n \sum_{m=0}^n (a/b)^m$$

$$h[n] = b^n \frac{1-(a/b)^{n+1}}{1-a/b} = \frac{b^n - a^{n+1}/b}{1-a/b} = \frac{b^{n+1} - a^{n+1}}{b-a}$$

$$h[n] = \frac{(2/3)^{n+1} - (1/2)^{n+1}}{1/6} = 6[(2/3)^{n+1} - (1/2)^{n+1}]$$

$$h[3] = 6[(2/3)^4 - (1/2)^4] = 0.8102$$

Solution of ECE 315 Test 2 F06

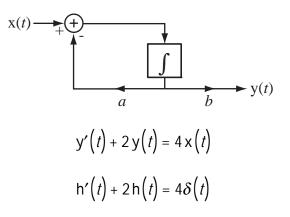
1. A system is described by the equation y[n] = ln(x[n-1]) in which x is the excitation and y is the response. Identify its properties by circling the appropriate answer, Yes or No.

Linear	Yes	No	Time Invariant	Yes	No
Stable	Yes	No	Dynamic	Yes	No
Causal	Yes	No	Invertible	Yes	No

- 2. In the system below a = 2 and b = 4.
 - (a) Write the differential equation describing it.

$$(1 / 4) y'(t) = x(t) - (1 / 2) y(t)$$

(b) The impulse response can be written in the form $h(t) = Ke^{\lambda t} u(t)$. Find the numerical values of *K* and λ . K = 4, $\lambda = -2$



Eigenvalue $\lambda = -2$. Integrating once through zero.

$$\underbrace{h(0^{+})}_{=\mathcal{K}} - \underbrace{h(0^{-})}_{=0} + 2 \underbrace{\int_{0^{-}}^{0^{+}} h(t) dt}_{=0} = 4 \left[\underbrace{u(0^{+})}_{=1} - \underbrace{u(0^{-})}_{=0} \right] \Longrightarrow \mathcal{K} = 4$$

3. If y(t) = x(t) * h(t) and x(t) = 2rect(t+1) and h(t) = 5rect(t), what is the numerical value of y(-1/2)? y(-1/2) = 5

$$\mathbf{y}(t) = \int_{-\infty}^{\infty} \mathbf{x}(\tau) \mathbf{h}(t-\tau) d\tau = \int_{-\infty}^{\infty} 2 \operatorname{rect}(\tau+1) \operatorname{5rect}(t-\tau) d\tau$$

$$y(-1/2) = 10\int_{-\infty}^{\infty} \operatorname{rect}(\tau + 1)\operatorname{rect}(-1/2 - \tau) d\tau = 10\int_{-\infty}^{\infty} \operatorname{rect}(\tau + 1)\operatorname{rect}(\tau + 1/2) d\tau$$

rect $(\tau + 1)$ is 1 between -1/2 and -3/2 and zero elsewhere rect $(\tau + 1/2)$ is 1 between 0 and -1 and zero elsewhere \therefore rect $(\tau + 1)$ rect $(\tau + 1/2)$ is 1 between -1/2 and -1 and zero elsewhere

$$y(-1/2) = 10\int_{-1}^{-1/2} d\tau = 5$$

4. If
$$y[n] = x[n] * h[n]$$
 and $x[n] = (0.9)^n u[n]$ and
 $h[n] = 2\delta[n] - 3\delta[n-4]$, what is the numerical value of $y[3]$?
 $y[3] = \underline{1.458}$

$$y[n] = (0.9)^{n} u[n] * (2\delta[n] - 3\delta[n-4])$$
$$y[n] = 2(0.9)^{n} u[n] * \delta[n] - 3(0.9)^{n} u[n] * \delta[n-4]$$
$$y[n] = 2(0.9)^{n} u[n] - 3(0.9)^{n-4} u[n-4]$$
$$y[3] = 2(0.9)^{3} u[3] - 3(0.9)^{-1} u[-1] = 2(0.9)^{3} = 1.458$$

5. A system with an impulse response $h_1[n] = a^n u[n]$ is cascade connected with a second system with impulse response $h_2[n] = b^n u[n]$. If a = 1/4 and b = 1/3, and h[n] is the impulse response of the overall cascade-connected system what is the numerical value of h[3]? h[3] = 0.1013

$$\begin{bmatrix} \sum_{n=0}^{N-1} r^n = \begin{cases} N & , r = 1 \\ \frac{1-r^n}{1-r} & , r \neq 1 \end{bmatrix}$$

$$h[n] = h_1[n] * h_2[n] = \sum_{m=-\infty}^{\infty} a^m u[m] b^{n-m} u[n-m]$$

$$h[n] = b^n \sum_{m=0}^n a^m b^{-m} = b^n \sum_{m=0}^n (a/b)^m$$

$$h[n] = b^n \frac{1-(a/b)^{n+1}}{1-a/b} = \frac{b^n - a^{n+1}/b}{1-a/b} = \frac{b^{n+1} - a^{n+1}}{b-a}$$

$$h[n] = \frac{(1/4)^{n+1} - (1/3)^{n+1}}{-1/12} = 12[(1/3)^{n+1} - (1/4)^{n+1}]$$

$$h[3] = 12[(1/3)^4 - (1/4)^4] = 0.1013$$

Solution of ECE 315 Test 2 F06

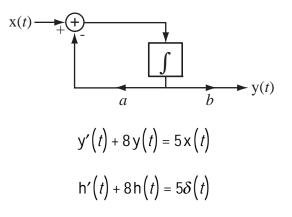
1. A system is described by the equation y[n] = ln(x[n+1]) in which x is the excitation and y is the response. Identify its properties by circling the appropriate answer, Yes or No.

Linear	Yes	No	Time Invariant	Yes	No
Stable	Yes	No	Dynamic	Yes	No
Causal	Yes	No	Invertible	Yes	No

- 2. In the system below a = 8 and b = 5.
 - (a) Write the differential equation describing it.

$$(1 / 5) y'(t) = x(t) - (8 / 5) y(t)$$

(b) The impulse response can be written in the form $h(t) = Ke^{\lambda t} u(t)$. Find the numerical values of *K* and λ . K = 5, $\lambda = -8$



Eigenvalue $\lambda = -8$. Integrating once through zero.

$$\underbrace{h(0^{+})}_{=\mathcal{K}} - \underbrace{h(0^{-})}_{=0} + 8 \underbrace{\int_{0^{-}}^{0^{+}} h(t) dt}_{=0} = 5 \left[\underbrace{u(0^{+})}_{=1} - \underbrace{u(0^{-})}_{=0} \right] \Rightarrow \mathcal{K} = 5$$

3. If y(t) = x(t) * h(t) and $x(t) = 2 \operatorname{rect}(t)$ and $h(t) = -3\operatorname{rect}(t/2)$, what is the numerical value of y(1)? y(1) = -3

$$y(t) = \int_{-\infty}^{\infty} x(\tau) h(t-\tau) d\tau = \int_{-\infty}^{\infty} 2 \operatorname{rect}(\tau) (-3) \operatorname{rect}((t-\tau)/2) d\tau$$
$$y(1) = -6 \int_{-\infty}^{\infty} \operatorname{rect}(\tau) \operatorname{rect}((1-\tau)/2) d\tau = -6 \int_{-\infty}^{\infty} \operatorname{rect}(\tau) \operatorname{rect}((\tau-1)/2) d\tau$$

rect (τ) is 1 between -1/2 and 1/2 and zero elsewhere rect $((\tau - 1)/2)$ is 1 between 0 and 2 and zero elsewhere \therefore rect (τ) rect $(\tau/2)$ is 1 between 0 and 1/2 and zero elsewhere

$$y(1) = -6 \int_{0}^{1/2} d\tau = -3$$

4. If
$$y[n] = x[n] * h[n]$$
 and $x[n] = (0.9)^n u[n]$ and
 $h[n] = 2\delta[n] - 3\delta[n-2]$, what is the numerical value of $y[3]$?
 $y[3] = -1.242$

$$y[n] = (0.9)^{n} u[n] * (2\delta[n] - 3\delta[n-2])$$
$$y[n] = 2(0.9)^{n} u[n] * \delta[n] - 3(0.9)^{n} u[n] * \delta[n-2]$$
$$y[n] = 2(0.9)^{n} u[n] - 3(0.9)^{n-2} u[n-2]$$
$$y[3] = 2(0.9)^{3} u[3] - 3(0.9) u[1] = 2(0.9)^{3} - 3(0.9) = -1.242$$

5. A system with an impulse response $h_1[n] = a^n u[n]$ is cascade connected with a second system with impulse response $h_2[n] = b^n u[n]$. If a = 1/5 and b = 1/3, and h[n] is the impulse response of the overall cascade-connected system what is the numerical value of h[2]? h[2] = 0.2178

$$\left[\sum_{n=0}^{N-1} r^n = \begin{cases} N & , r = 1 \\ \frac{1-r^N}{1-r} & , r \neq 1 \end{cases}\right]$$

$$\mathbf{h}[n] = \mathbf{h}_1[n] * \mathbf{h}_2[n] = \sum_{m=-\infty}^{\infty} a^m \mathbf{u}[m] b^{n-m} \mathbf{u}[n-m]$$

For n < 0, h[n] = 0.

For $n \ge 0$,

$$h[n] = b^n \sum_{m=0}^n a^m b^{-m} = b^n \sum_{m=0}^n (a / b)^m$$

$$h[n] = b^{n} \frac{1 - (a/b)^{n+1}}{1 - a/b} = \frac{b^{n} - a^{n+1}/b}{1 - a/b} = \frac{b^{n+1} - a^{n+1}}{b - a}$$
$$h[n] = \frac{(1/5)^{n+1} - (1/3)^{n+1}}{-2/15} = 7.5[(1/3)^{n+1} - (1/5)^{n+1}]$$

For all time

$$h[n] = 7.5 \left[(1/3)^{n+1} - (1/5)^{n+1} \right] u[n]$$
$$h[2] = 7.5 \left[(1/3)^3 - (1/5)^3 \right] u[2] = 0.2178$$