Solution of ECE 315 Test 3 F06

1. Find the numerical value of the signal energy of $x[n] = 2 \operatorname{rect}_2[n-1] - 3 \operatorname{tri}(n/3)$.

$$E_{x} = \sum_{n=-\infty}^{\infty} |\mathbf{x}[n]|^{2} = \sum_{n=-\infty}^{\infty} |2\operatorname{rect}_{2}[n-1] - 3\operatorname{tri}(n/3)|^{2} = \sum_{n=-\infty}^{\infty} [2\operatorname{rect}_{2}[n-1] - 3\operatorname{tri}(n/3)]^{2}$$

First fill in the table below with numbers.

n	-3	-2	-1	0	1	2	3	4
$2 \operatorname{rect}_2[n-1]$	0	0	2	2	2	2	2	0
$3 \operatorname{tri}(n / 3)$	0	1	2	3	2	1	0	0
$\mathbf{x}[n]$	0	-1	0	-1	0	1	2	0
$x^2[n]$	0	1	0	1	0	1	4	0

The sum of the squares is 7. Therefore $E_x = 7$.

2. Find the numerical value of the average signal power of a periodic signal x(t) with period $T_0 = 3$, one period of which is described by

$$\mathbf{x}(t) = \begin{cases} 3 \operatorname{rect}\left(\frac{t-1}{2}\right) - 2 \operatorname{rect}(t-1/2) &, \ 0 < t < 2 \\ -3 &, \ 2 < t < 3 \end{cases}$$
$$P_{x} = \frac{1}{T_{0}} \int_{T_{0}} |\mathbf{x}(t)|^{2} dt = \text{average value of } \mathbf{x}^{2}(t)$$

First fill in the table below with numbers.

t	0 < t < 1	1 < t < 2	2 < t < 3
$3 \operatorname{rect}\left(\frac{t-1}{2}\right)$	3	3	0
$2 \operatorname{rect}(t - 1/2)$	2	0	0
$\mathbf{x}(t)$	1	3	-3
$\mathbf{x}^{2}(t)$	1	9	9

Total area under $x^{2}(t)$ over one period is 19. Therefore the average value of $x^{2}(t)$ is 19/3 which is the same as the average signal power P_{x} .

Solution of ECE 315 Test 3 F06

1. Find the numerical value of the signal energy of $x[n] = 5 \operatorname{rect}_2[n-1] - 6 \operatorname{tri}(n/3)$.

$$E_x = \sum_{n=-\infty}^{\infty} |\mathbf{x}[n]|^2 = \sum_{n=-\infty}^{\infty} |5\operatorname{rect}_2[n-1] - 6\operatorname{tri}(n/3)|^2 = \sum_{n=-\infty}^{\infty} [5\operatorname{rect}_2[n-1] - 6\operatorname{tri}(n/3)]^2$$

First fill in the table below with numbers.

n	-3	-2	-1	0	1	2	3	4
$5 \operatorname{rect}_2[n-1]$	0	0	5	5	5	5	5	0
$6 \operatorname{tri}(n / 3)$	0	2	4	6	4	2	0	0
x[n]	0	-2	1	-1	1	3	5	0
$x^2[n]$	0	4	1	1	1	9	25	0

The sum of the squares is 41. Therefore $E_x = 41$.

2. Find the numerical value of the average signal power of a periodic signal x(t) with period $T_0 = 3$, one period of which is described by

$$\mathbf{x}(t) = \begin{cases} 2 \operatorname{rect}\left(\frac{t+1}{2}\right) - 3\operatorname{rect}(t+3/2) &, -2 < t < 0\\ -2 &, 0 < t < 1 \end{cases}$$
$$P_{x} = \frac{1}{T_{0}} \int_{T_{0}} |\mathbf{x}(t)|^{2} dt = \text{average value of } \mathbf{x}^{2}(t)$$

First fill in the table below with numbers.

t	-2 < t < -1	-1 < t < 0	0 < t < 1
$2 \operatorname{rect}\left(\frac{t+1}{2}\right)$	2	2	0
$3 \operatorname{rect}(t + 3/2)$	3	0	0
$\mathbf{x}(t)$	-1	2	-2
$\mathbf{x}^{2}(t)$	1	4	4

Total area under $x^2(t)$ over one period is 9. Therefore the average value of $x^2(t)$ is 9/3=3 which is the same as the average signal power P_x .

Solution of ECE 315 Test 3 F06

1. Find the numerical value of the signal energy of $x[n] = -3rect_2[n-2] + 6tri(n/3)$.

$$E_{x} = \sum_{n=-\infty}^{\infty} |\mathbf{x}[n]|^{2} = \sum_{n=-\infty}^{\infty} |-3\operatorname{rect}_{2}[n-2] + 6\operatorname{tri}(n/3)|^{2} = \sum_{n=-\infty}^{\infty} [-3\operatorname{rect}_{2}[n-2] + 6\operatorname{tri}(n/3)]^{2}$$

First fill in the table below with numbers.

n	-3	-2	-1	0	1	2	3	4
$3 \operatorname{rect}_2[n-2]$	0	0	0	3	3	3	3	3
$6 \operatorname{tri}(n / 3)$	0	2	4	6	4	2	0	0
x[n]	0	2	4	3	1	-1	-3	-3
$x^2[n]$	0	4	16	9	1	1	9	9

The sum of the squares is 49. Therefore $E_x = 49$.

2. Find the numerical value of the average signal power of a periodic signal x(t) with period $T_0 = 3$, one period of which is described by

$$\mathbf{x}(t) = \begin{cases} 2 \operatorname{rect}\left(\frac{t-1}{2}\right) - 5 \operatorname{rect}(t-1/2) &, \ 0 < t < 2 \\ -4 &, \ 2 < t < 3 \end{cases}$$
$$P_{x} = \frac{1}{T_{0}} \int_{T_{0}} |\mathbf{x}(t)|^{2} dt = \text{average value of } \mathbf{x}^{2}(t)$$

First fill in the table below with numbers.

t	0 < t < 1	1 < t < 2	2 < t < 3
$2 \operatorname{rect}\left(\frac{t-1}{2}\right)$	2	2	0
$5 \operatorname{rect}(t - 1/2)$	5	0	0
$\mathbf{x}(t)$	-3	2	-4
$\mathbf{x}^{2}(t)$	9	4	16

Total area under $x^{2}(t)$ over one period is 29. Therefore the average value of $x^{2}(t)$ is 29/3 which is the same as the average signal power P_{x} .