Solution of ECE 315 Test 2 F07

1. A discrete-time signal has the following values:

For all other $n \ge \lfloor n \rfloor$ is zero. Let $y \lfloor n \rfloor = x \lfloor 2n - 1 \rfloor$. Fill in the values below.

п	-2	-1		4		7	12	
y[<i>n</i>]					_			-
	n	-2	-1	4	7	12		
	y[n]	4	5	-2	3	0		

In discrete time any period must be an integer.

2. What is the fundamental period of $x[n] = -3\sin(3\pi n/11)$? $N_0 =$

In the form $\sin(2q\pi n / N_0)$, if all common factors in q and N_0 have already been cancelled the fundamental period is N_0 .

$$\mathbf{x}[n] = -3\sin(2 \times 3\pi n / 22) \Longrightarrow N_0 = 22$$

3. Exactly one period of a discrete-time periodic signal is described by $x[n] = n^2$, $0 \le n < 5$. What is the average signal power E_x ? $E_x =$ ______

$$E_x = \frac{1}{N} \sum_{x = \langle N \rangle} \left| x \left[n \right] \right|^2 = \frac{1}{5} \sum_{n=0}^4 n^4 = \frac{0 + 1 + 16 + 81 + 256}{5} = \frac{354}{5} = 70.8$$

Solution of ECE 315 Test 2 F07

1. A discrete-time signal has the following values:

Let y[n] = x[2n-1]. Fill in the values below.

2. What is the fundamental period of $x[n] = -3\sin(3\pi n/13)$? $N_0 =$

In the form $\sin(2q\pi n / N_0)$, if all common factors in q and N_0 have already been cancelled the fundamental period is N_0 .

$$\mathbf{x}[n] = -3\sin(2 \times 3\pi n / 26) \Longrightarrow N_0 = 26$$

In discrete time any period must be an integer.

3. Exactly one period of a discrete-time periodic signal is described by $x[n] = n^2$, $-1 \le n < 4$. What is the average signal power E_x ? $E_x =$ ______

$$E_x = \frac{1}{N} \sum_{x = \langle N \rangle} \left| x \left[n \right] \right|^2 = \frac{1}{5} \sum_{n=-1}^3 n^4 = \frac{1+0+1+16+81}{5} = \frac{99}{5} = 19.8$$

Solution of ECE 315 Test 2 F07

1. A discrete-time signal has the following values:

For all other $n \ge \lfloor n \rfloor$ is zero. Let $y \lfloor n \rfloor = x \lfloor 2n - 1 \rfloor$. Fill in the values below.

n	-4	-2		1		3	8
y[<i>n</i>]							
	n	-4	-2	1	3	8	
	y[n]	0	4	-9	6	0	

2. What is the fundamental period of $x[n] = -3\sin(3\pi n/7)$? $N_0 =$

In the form $\sin(2q\pi n / N_0)$, if all common factors in q and N_0 have already been cancelled the fundamental period is N_0 .

$$\mathbf{x}[n] = -3\sin(2 \times 3\pi n / 14) \Longrightarrow N_0 = 14$$

In discrete time any period must be an integer.

3. Exactly one period of a discrete-time periodic signal is described by $x[n] = n^2$, $-2 \le n < 3$. What is the average signal power E_x ? $E_x =$ ______

$$E_x = \frac{1}{N} \sum_{x = \langle N \rangle} \left| \mathbf{x} \left[n \right] \right|^2 = \frac{1}{5} \sum_{n=-2}^2 n^4 = \frac{16 + 1 + 0 + 1 + 16}{5} = \frac{34}{5} = 6.8$$