Solution of ECE 315 Test 4 F05

In each case circle the correct system characteristics. (In each case x is the excitation, y is the response and stable means BIBO stable.)

$$\mathbf{y}(t) = \begin{cases} 2\mathbf{x}(t) , \ \mathbf{x}(t) < -2 \\ \mathbf{x}(t) , \ -2 \le \mathbf{x}(t) \le 2 \\ 2\mathbf{x}(t) , \ \mathbf{x}(t) > 2 \end{cases}$$

Non-Linear	$\mathbf{x}(t) = 1 \Rightarrow \mathbf{y}(t) = 1 \text{ and } \mathbf{x}(t) = 3 \Rightarrow \mathbf{y}(t) = 6.$
	Not homogeneous, therefore non-linear.
Static	y(t) does not depend on x at any time other than t.
Stable	y(t) is never greater in magnitude than $2 x(t) $
	so if x is bounded, y is also.
Invertible	For every $y(t)$ there is a unique $x(t)$
Time Invariant	Shifting $x(t)$ in time shifts $y(t)$ by the same
	amount.

$$\mathbf{y}[n] = \sqrt{\mathbf{x}[n]}$$

Non-Linear	$x[n] = 4 \Rightarrow y[n] = 2 \text{ and } x[n] = 9 \Rightarrow y[n] = 3$
	Not homogeneous, therefore non-linear
Static	y[n] does not depend on x at any time other than n .
Stable	If x is bounded then so is y.
Non-Invertible	$ \mathbf{x}[n] = \mathbf{y}^2 \Rightarrow \mathbf{x}[n] = \pm \mathbf{y}^2$. Sign of x is
	indeterminate and two different x's yield the same y.
Time Invariant	Shifting $x[n]$ in time shifts $y[n]$ by the same
	amount.
$\mathbf{v}[n] = \mathbf{x}[3n]$	
Linear	Multiplying x by any constant multiplies y by the
	same constant. Adding two signals causes a response
	which is the sum of the responses to the two individual
	signals.
Dynamic	y[1] depends on $x[3]$ which occurs at a time other
	than $n = 1$, therefore dynamic.

Stable	The values of y come directly from the values of x
	so if x is bounded, so is y.
Non-Invertible	\boldsymbol{x} is decimated to form $\boldsymbol{y}.$ Therefore the values of \boldsymbol{x}
	lost in decimation cannot be recovered simply by
	knowing y.
Time Variant	$\mathbf{x}_{1}[n] = \mathbf{g}[n] \Longrightarrow \mathbf{y}_{1}[n] = \mathbf{g}[3n]$
$\mathbf{x}_{2}[n] = \mathbf{g}[n-n_{0}] \Longrightarrow \mathbf{y}$	$y_{2}[n] = g[3n - n_{0}] \neq y_{1}[n - n_{0}] = g[3(n - n_{0})]$

y''(t) - 2y'(t) + 5y(t) = 4x(t)

Linear	Differential equation in which each derivative of the
	response is raised to the first power and excitation is
	also and the coefficients are all constants.
Dynamic	Differential equation.
Unstable	Eigenvalues are $1 \pm j2$. Real parts are non-
	negative.
Invertible	$\mathbf{x}(t) = (1/4) \big[\mathbf{y}''(t) - 2 \mathbf{y}'(t) + 5 \mathbf{y}(t) \big]$
Time Invariant	Standard differential equation form with no multiplications of derivatives by any functions of time.

$$y''(t) + 2y'(t) + 5y(t) = 4x(t)$$

Linear	Differential equation in which each derivative of the
	response is raised to the first power and excitation is
	also and all coefficients are constant.
Dynamic	Differential equation.
Stable	Eigenvalues are $-1 \pm j2$. Real parts are negative.
Invertible	x(t) = (1/4)[y''(t) - 2y'(t) + 5y(t)]
Time Invariant	Standard differential equation form with no multiplications of derivatives by any functions of time.

$$\mathbf{y}(t) = \begin{cases} -10 & , \ \mathbf{x}(t-1) < -2 \\ \mathbf{x}(t-1) & , \ -2 \le \mathbf{x}(t-1) \le 2 \\ 10 & , \ \mathbf{x}(t-1) > 2 \end{cases}$$

Non-Linear	$\mathbf{x}(t-1) = 4 \Rightarrow \mathbf{y}(t) = 10$ and
	$x(t-1) = 6 \Rightarrow y(t) = 10$. Not homogeneous, therefore
	non-linear.
Dynamic	y(t) depends on x at a time other than t.

Stable	y(t) cannot exceed 10 in magnitude for any $x(t)$
Non-Invertible	If $y(t) = 10$ or $y(t) = -10$ it is impossible to
	determine $x(t)$ because multiple x's cause the same y.
Time Invariant	Shifting $x(t)$ in time shifts $y(t)$ by the same
	amount.