Solution of ECE 316 Test #11 S03 4/9/03 #1

1. A digital filter designed by the impulse invariant design method has an impulse response, h[n] = $0.8^n u[n]$. It simulates a CT filter with an impulse response of h(t) = $e^{-4t} u(t)$. What is the sampling rate, f_s ?

For the impulse invariant method, $0.8^n \operatorname{u}[n] = e^{-4nT_s} \operatorname{u}(nT_s)$ fi $0.8 = e^{-4T_s}$ fi $T_s = 0.05578$ s fi $f_s = 17.93$ Hz

2. A digital filter has an impulse response, $h[n] = 0.6^n u[n]$. If it is excited by a unit sequence, what is the final value of the response? $\left(\lim_{n \notin \bullet} g[n] = \lim_{z \notin 1} (z - 1)G(z)\right)$

 $H(z) = \frac{z}{z - 0.6} \text{ fi } H_{-1}(z) = \frac{z}{z - 1} \frac{z}{z - 0.6} \text{ fi } \lim_{n \notin \bullet} h_{-1}[n] = \lim_{z \notin \bullet} (z - 1) \frac{z}{z - 1} \frac{z}{z - 0.6} = \frac{1}{1 - 0.6} = 2.5$ (h_{-1}[n] is the unit sequence response)

3. A digital filter has a transfer function, $H(z) = \frac{10z}{z - 0.5}$. At what DT radian frequency, W, is its magnitude response a minimum? $(z = e^{jW})$ $H(e^{jW}) = \frac{10e^{jW}}{e^{jW} - 0.5}$. Minimum magnitude response occurs where $e^{jW} - 0.5$ is a maximum magnitude which is at $W = \pm p$. (Accept either W = p or W = -p as correct.)

4. A digital filter has a transfer function, $H(z) = \frac{10(z-1)}{z-0.3}$. At what DT radian frequency, W, is its magnitude response a minimum? $(z = e^{jW})$ $H(e^{jW}) = \frac{10(e^{jW} - 1)}{e^{jW} - 0.3}$. Minimum magnitude occurs where $e^{jW} - 1 = 0$ which is at W = 0.

5. A digital filter has a transfer function, $H(z) = \frac{2z}{z - 0.7}$. What is the magnitude of its response at a DT radian frequency of $W = \frac{p}{2}?(z = e^{jW})$ $H(e^{jW}) = \frac{2e^{jW}}{m} = \frac{2e^{j\frac{p}{2}}}{m} = \frac{j2}{1.342} = 1.342 = j0.9396 \text{ fi} \left| \frac{\hat{F}}{HAe} e^{j\frac{p}{2}} \right| = 1.6385$

$$H(e^{jW}) = \frac{2e^{jW}}{e^{jW} - 0.7} = \frac{2e^{j\frac{1}{2}}}{e^{j\frac{p}{2}} - 0.7} = \frac{j2}{j - 0.7} = 1.342 - j0.9396 \text{ fi} \left| H_{\text{E}}^{\hat{\text{E}}} e^{j\frac{p}{2}} \right| = 1.6385$$