Solution ofECE 316 Final Examination S09

1. A second-order analog bandpass filter with a transfer function of the general form

$$
H(s) = \frac{Ks}{s^2 + as + b}
$$

is approximated by a digital filter designed using the bilinear method.

- (a) How many zeros will the digital filter have?
- (b) Knowing only what this problem states, is it possible to locate the zeros numerically?
- (c) If it is possible to locate the zeros numerically, where are they?
- (d) How many poles will the digital filter have?
- (b) Knowing only what this problem states, is it possible to locate the poles numerically?
- (c) If it is possible to locate the poles numerically, where are they?

$$
H_a(s) = \frac{Ks}{s^2 + bs + c} \Rightarrow H_a(z) = \frac{K\frac{2}{T_s} \frac{z-1}{z+1}}{\left(\frac{2}{T_s} \frac{z-1}{z+1}\right)^2 + b\frac{2}{T_s} \frac{z-1}{z+1} + c}
$$

$$
H_a(z) = \frac{2KT_s(z+1)(z-1)}{4(z-1)^2 + 2bT_s(z+1)(z-1) + cT_s^2(z+1)^2}
$$

Zeros at $z = \pm 1$. Two poles. Cannot locate the poles numerically with this information.

2. Below are pole/zero diagrams for the loop transfer functions of some feedback systems. Draw a root locus for each one.

3. A discrete time feedback system has a forward path transfer function $H_1(z) = \frac{Kz}{z+0.4}$ and a feedback path transfer function $H_2(z) = 1$. For what numerical range of *K*'s is this feedback system stable?

$$
H(z) = \frac{\frac{Kz}{z + 0.4}}{1 + \frac{Kz}{z + 0.4}} = \frac{Kz}{z(1 + K) + 0.4}
$$

Poles at $z(1 + K) + 0.4 = 0 \Rightarrow z = -\frac{0.4}{1 + K}$
For stability, $\left| -\frac{0.4}{1 + K} \right| < 1 \Rightarrow K > -0.6$ or $K < -1.4$

4. What are the numerical locations of the poles and zeros of a 2nd order butterworth highpass filter with a corner radian frequency of $\omega = 10$? (Specify the pole and zero locations in the form $A\angle B$ where *A* is the magnitude and *B* is the angle in radians. For example, $6\angle 1.4$.)

$$
n = 2 \Rightarrow
$$
 Normalized lowpass poles at $e^{j3\pi/4}$, $e^{-j3\pi/4} \Rightarrow$ H_{LP} $\left(s\right) = \frac{1}{\left(s - \frac{-1 + j}{\sqrt{2}}\right)\left(s - \frac{-1 - j}{\sqrt{2}}\right)}$

$$
H_{LP}(s) = \frac{1}{s^2 + \sqrt{2s + 1}} \Rightarrow H_{HP}(s) = \left[\frac{1}{s^2 + \sqrt{2s + 1}}\right]_{s \to 10/s} = \frac{1}{\left(10/s\right)^2 + 10\sqrt{2}/s + 1} = \frac{s^2}{s^2 + 10\sqrt{2s + 100}}
$$

Two zeros at *s* = 0 and Poles at $s = \frac{-10\sqrt{2} \pm \sqrt{200 - 400}}{2} = -5\sqrt{2} \pm j\sqrt{50} = 10\angle 2.3562$ and $10\angle -2.3562$

5. Find the inverse Laplace transforms of these signals.

(a)
$$
H(s) = \frac{3s^2}{s^2 + 5s + 4}
$$

Synthetically dividing the numerator by the denominator,

$$
H(s) = 3 - \frac{15s + 12}{s^2 + 5s + 4} = 3 - \left[\frac{16}{s + 4} - \frac{1}{s + 1} \right]
$$

$$
h(t) = 3\delta(t) - \left[16e^{-4t} - e^{-t} \right] u(t)
$$

(b) $H(s) = \frac{5s}{s}$ $(s + 1)^2$

The partial-fraction expansion is

$$
H(s) = \frac{-5}{(s+1)^2} + \frac{5}{s+1}
$$

h(t) = 5e^{-t}(1-t)u(t)

6. Find the inverse *z* transforms of these signals.

(a)
$$
H(z) = \frac{z^2}{z^2 - 1.1z + 0.28}
$$

\n
$$
\frac{H(z)}{z} = \frac{z}{z^2 - 1.1z + 0.28} = \frac{7/3}{z - 0.7} - \frac{4/3}{z - 0.4} \Rightarrow H(z) = \frac{7z/3}{z - 0.7} - \frac{4z/3}{z - 0.4}
$$
\n
$$
h[n] = \left[(7/3)(0.7)^n - (4/3)(0.4)^n \right] u[n]
$$
\nAlternate Solution:

\n
$$
H(z) = 1 + \frac{1.1z - 0.28}{z^2 - 1.1s + 0.28} = 1 + \frac{1.633}{z - 0.7} - \frac{0.533}{z - 0.4}
$$
\n
$$
h[n] = \delta[n] + \left[1.633(0.7)^{n-1} - 0.533(0.4)^{n-1} \right] u[n-1]
$$
\n(b) $H(z) = \frac{z^2 - 2z + 5}{z^2}$ \n
$$
H(z) = \frac{z^2 - 2z + 5}{z^2} = 1 - 2z^{-1} + 5z^{-2}
$$
\n
$$
h[n] = \delta[n] - 2\delta[n-1] + 5\delta[n-2]
$$

7. Find the numerical Nyquist rates for these signals. (If a signal is not bandlimited write "infinity".)

(a)
$$
x(t) = -3\cos(200\pi t)\sin(500\pi t)
$$

\n $X(f) = (-3/2)[\delta(f - 100) + \delta(f + 100)]*(1/2)[\delta(f + 250) - \delta(f - 250)]$
\n $X(f) = (-3/4)[\delta(f + 150) - \delta(f - 350) + \delta(f + 350) - \delta(f - 150)]$

Highest frequency is 350 Hz. Therefore the Nyquist rate is 700 samples/second.

(b)
$$
x(t) = 18\operatorname{sinc}(3t) * \delta_7(t)
$$

 $X(f) = 6 \text{rect}(f/3) \times (1/7) \delta_{1/7}(f)$

The periodic impulse has impulses at every integer multiple of 1/7 Hz. The rectangle zeros out all impulses at frequencies greater than 1.5 in magnitude. Therefore the highest frequency is the greatest integer multiple of 1/7 that is less than 1.5. That is 10/7 or 1.429 and the Nyquist rate is 2.857 samples/second.

8. Match the magnitude frequency responses to the pole zero diagrams by writing the appropriate letter designation above the pole zero diagram.

Solution ofECE 316 Final Examination S09

1. A second-order analog bandpass filter with a transfer function of the general form

$$
H(s) = \frac{Ks}{s^2 + as + b}
$$

is approximated by a digital filter designed using the bilinear method.

- (a) How many zeros will the digital filter have?
- (b) Knowing only what this problem states, is it possible to locate the zeros numerically?
- (c) If it is possible to locate the zeros numerically, where are they?
- (d) How many poles will the digital filter have?
- (b) Knowing only what this problem states, is it possible to locate the poles numerically?
- (c) If it is possible to locate the poles numerically, where are they?

$$
H_a(s) = \frac{Ks}{s^2 + bs + c} \Rightarrow H_a(z) = \frac{K\frac{2}{T_s}\frac{z-1}{z+1}}{\left(\frac{2}{T_s}\frac{z-1}{z+1}\right)^2 + b\frac{2}{T_s}\frac{z-1}{z+1} + c}
$$

$$
H_a(z) = \frac{2KT_s(z+1)(z-1)}{4(z-1)^2 + 2bT_s(z+1)(z-1) + cT_s^2(z+1)^2}
$$

Zeros at $z = \pm 1$. Two poles. Cannot locate the poles numerically with this information.

2. Below are pole/zero diagrams for the loop transfer functions of some feedback systems. Draw a root locus for each one.

3. A discrete time feedback system has a forward path transfer function $H_1(z) = \frac{Kz}{z - 0.6}$ and a feedback path transfer function $H_2(z) = 1$. For what numerical range of *K*'s is this feedback system stable?

$$
H(z) = \frac{\frac{Kz}{z - 0.6}}{1 + \frac{Kz}{z - 0.6}} = \frac{Kz}{z(1 + K) - 0.6}
$$

Poles at $z(1 + K) - 0.6 = 0 \Rightarrow z = \frac{0.6}{1 + K}$
For stability, $\left| \frac{0.6}{1 + K} \right| < 1 \Rightarrow K > -0.4$ or $K < -1.6$

4. What are the numerical locations of the poles and zeros of a 2nd order butterworth highpass filter with a corner radian frequency of $\omega = 20$? (Specify the pole and zero locations in the form $A\angle B$ where *A* is the magnitude and *B* is the angle in radians. For example, $6\angle 1.4$.)

$$
n = 2 \Rightarrow
$$
 Normalized lowpass poles at $e^{j3\pi/4}$, $e^{-j3\pi/4} \Rightarrow$ H_{LP} $\left(s\right) = \frac{1}{\left(s - \frac{-1+j}{\sqrt{2}}\right)\left(s - \frac{-1-j}{\sqrt{2}}\right)}$

$$
H_{LP}(s) = \frac{1}{s^2 + \sqrt{2}s + 1} \Rightarrow H_{HP}(s) = \left[\frac{1}{s^2 + \sqrt{2}s + 1} \right]_{s \to 20/s} = \frac{1}{(20/s)^2 + 20\sqrt{2}/s + 1} = \frac{s^2}{s^2 + 20\sqrt{2}s + 400}
$$

Two zeros at *s* = 0 and Poles at $s = \frac{-20\sqrt{2} \pm \sqrt{800 - 1600}}{2} = -10\sqrt{2} \pm j\sqrt{200} = 20\angle 2.3562$ and $20\angle -2.3562$

5. Find the inverse Laplace transforms of these signals.

(a)
$$
H(s) = \frac{7s^2}{s^2 + 5s + 4}
$$

Synthetically dividing the numerator by the denominator,

$$
H(s) = 7 - \frac{35s + 28}{s^2 + 5s + 4} = 7 - \left[\frac{112/3}{s + 4} - \frac{7/3}{s + 1} \right]
$$

$$
h(t) = 7\delta(t) - \left[37.33e^{-4t} - 2.33e^{-t} \right] u(t)
$$
s

$$
\text{(b)} \qquad \text{H}\left(s\right) = \frac{5s}{\left(s+2\right)^2}
$$

The partial-fraction expansion is

$$
H(s) = \frac{-10}{(s+2)^{2}} + \frac{5}{s+2}
$$

h(t) = 5e^{-2t}(1-2t)u(t)

6. Find the inverse *z* transforms of these signals.

(a)
$$
H(z) = \frac{z^2}{z^2 - 0.7z + 0.12}
$$

\n
$$
\frac{H(z)}{z} = \frac{z}{z^2 - 0.7z + 0.12} = -\frac{3}{z - 0.3} + \frac{4}{z - 0.4} \Rightarrow H(z) = -\frac{3z}{z - 0.3} + \frac{4z}{z - 0.4}
$$
\n
$$
h[n] = [4(0.4)^n - 3(0.3)^n]u[n]
$$
\nAlternate Solution:

\n
$$
H(z) = 1 + \frac{0.7z - 0.12}{z - 0.7z + 0.12} = 1 + \frac{1.6}{z - 0.2} - \frac{0.9}{z - 0.2}
$$

$$
H(z) = 1 + \frac{0.7z - 0.12}{z^2 - 0.7z + 0.12} = 1 + \frac{1.6}{z - 0.4} - \frac{0.9}{z - 0.3}
$$

$$
h[n] = \delta[n] + [1.6(0.4)^{n-1} - 0.9(0.3)^{n-1}]u[n-1]
$$

- (b) $H(z) = \frac{3z^2 z + 4}{z^2}$ $H(z) = \frac{3z^2 - z + 4}{z^2} = 3 - z^{-1} + 4z^{-2}$ $h\left[n\right] = 3\delta\left[n\right] - \delta\left[n-1\right] + 4\delta\left[n-2\right]$
- 7. Find the numerical Nyquist rates for these signals. (If a signal is not bandlimited write "infinity".)

(a)
$$
x(t) = -3\cos(200\pi t)\sin(1000\pi t)
$$

$$
X(f) = (-3/2)[\delta(f - 100) + \delta(f + 100)] * (1/2)[\delta(f + 500) - \delta(f - 500)]
$$

$$
X(f) = (-3/4)[\delta(f + 400) - \delta(f - 600) + \delta(f + 600) - \delta(f - 400)]
$$

Highest frequency is 600 Hz. Therefore the Nyquist rate is 1200 samples/second.

(b)
$$
x(t) = 18\operatorname{sinc}(3t) * \delta_9(t)
$$

$$
X(f) = 6 \operatorname{rect}(f/3) \times (1/9) \delta_{1/9}(f)
$$

The periodic impulse has impulses at every integer multiple of 1/9 Hz. The rectangle zeros out all impulses at frequencies greater than 1.5 in magnitude. Therefore the highest frequency is the greatest integer multiple of 1/9 that is less than 1.5. That is 13/9 or 1.444 and the Nyquist rate is 2.888 samples/second.

8. Match the magnitude frequency responses to the pole zero diagrams by writing the appropriate letter designation above the pole zero diagram.

Solution ofECE 316 Final Examination S09

1. A second-order analog bandpass filter with a transfer function of the general form

$$
H(s) = \frac{Ks}{s^2 + as + b}
$$

is approximated by a digital filter designed using the bilinear method.

- (a) How many zeros will the digital filter have?
- (b) Knowing only what this problem states, is it possible to locate the zeros numerically?
- (c) If it is possible to locate the zeros numerically, where are they?
- (d) How many poles will the digital filter have?
- (b) Knowing only what this problem states, is it possible to locate the poles numerically?
- (c) If it is possible to locate the poles numerically, where are they?

$$
H_a(s) = \frac{Ks}{s^2 + bs + c} \Rightarrow H_a(z) = \frac{K\frac{2}{T_s}\frac{z-1}{z+1}}{\left(\frac{2}{T_s}\frac{z-1}{z+1}\right)^2 + b\frac{2}{T_s}\frac{z-1}{z+1} + c}
$$

$$
H_a(z) = \frac{2KT_s(z+1)(z-1)}{4(z-1)^2 + 2bT_s(z+1)(z-1) + cT_s^2(z+1)^2}
$$

Zeros at $z = \pm 1$. Two poles. Cannot locate the poles numerically with this information.

2. Below are pole/zero diagrams for the loop transfer functions of some feedback systems. Draw a root locus for each one.

3. A discrete time feedback system has a forward path transfer function $H_1(z) = \frac{Kz}{z+0.1}$ and a feedback path transfer function $H_2(z) = 1$. For what numerical range of *K*'s is this feedback system stable?

$$
H(z) = \frac{\frac{Kz}{z + 0.1}}{1 + \frac{Kz}{z + 0.1}} = \frac{Kz}{z(1 + K) + 0.1}
$$

Poles at $z(1 + K) + 0.1 = 0 \Rightarrow z = -\frac{0.1}{1 + K}$
For stability, $\left| -\frac{0.1}{1 + K} \right| < 1 \Rightarrow K > -0.9$ or $K < -1.1$

4. What are the numerical locations of the poles and zeros of a 2nd order butterworth highpass filter with a corner radian frequency of $\omega = 30$? (Specify the pole and zero locations in the form $A\angle B$ where *A* is the magnitude and *B* is the angle in radians. For example, $6\angle 1.4$.)

$$
n = 2 \Rightarrow
$$
 Normalized lowpass poles at $e^{j3\pi/4}$, $e^{-j3\pi/4} \Rightarrow$ H_{LP} $(s) = \frac{1}{\left(s - \frac{-1 + j}{\sqrt{2}}\right)\left(s - \frac{-1 - j}{\sqrt{2}}\right)}$

$$
H_{LP}(s) = \frac{1}{s^2 + \sqrt{2}s + 1} \Rightarrow H_{HP}(s) = \left[\frac{1}{s^2 + \sqrt{2}s + 1} \right]_{s \to 30/s} = \frac{1}{\left(30 / s \right)^2 + 30\sqrt{2} / s + 1} = \frac{s^2}{s^2 + 30\sqrt{2}s + 900}
$$

Two zeros at *s* = 0 and Poles at *s* = $\frac{-30\sqrt{2} \pm \sqrt{1800 - 3600}}{2}$ = $-15\sqrt{2} \pm j\sqrt{450}$ = 30∠2.3562 and 30∠ − 2.3562

5. Find the inverse Laplace transforms of these signals.

(a)
$$
H(s) = \frac{5s^2}{s^2 + 5s + 4}
$$

Synthetically dividing the numerator by the denominator,

$$
H(s) = 5 - \frac{25s + 20}{s^2 + 5s + 4} = 5 - \left[\frac{80/3}{s + 4} - \frac{5/3}{s + 1} \right]
$$

$$
h(t) = 5\delta(t) - \left[26.667e^{-4t} - 1.667e^{-t} \right]u(t)
$$

$$
= \frac{5s}{\sqrt{365}}.
$$

$$
\text{(b)} \qquad \text{H}\left(s\right) = \frac{5s}{\left(s+3\right)^2}
$$

The partial-fraction expansion is

$$
H(s) = \frac{-15}{(s+3)^2} + \frac{5}{s+3}
$$

h(t) = 5e^{-3t}(1-3t)u(t)

6. Find the inverse *z* transforms of these signals.

(a)
$$
H(z) = \frac{z^2}{z^2 - 0.7z + 0.1}
$$

\n
$$
\frac{H(z)}{z} = \frac{z}{z^2 - 0.7z + 0.1} = \frac{5/3}{z - 0.5} - \frac{2/3}{z - 0.2} \Rightarrow H(z) = \frac{5z/3}{z - 0.5} - \frac{2z/3}{z - 0.2}
$$
\n
$$
h[n] = [(5/3)(0.5)^n - (2/3)(0.2)^n]u[n]
$$
\nAlternate Solution:

\n
$$
H(z) = 1 + \frac{0.7z - 0.1}{z^2 - 0.7z + 0.1} = 1 + \frac{0.833}{z - 0.5} - \frac{0.133}{z - 0.2}
$$
\n
$$
h[n] = \delta[n] + [0.833(0.5)^{n-1} - 0.133(0.2)^{n-1}]u[n-1]
$$
\n(b) $H(z) = \frac{3z^2 - 5z + 1}{z^2}$ \n
$$
H(z) = \frac{3z^2 - 5z + 1}{z^2} = 3 - 5z^{-1} + z^{-2}
$$
\n
$$
h[n] = 3\delta[n] - 5\delta[n-1] + \delta[n-2]
$$

7. Find the numerical Nyquist rates for these signals. (If a signal is not bandlimited write "infinity".)

(a)
$$
x(t) = -3\cos(260\pi t)\sin(500\pi t)
$$

\n $X(f) = (-3/2)[\delta(f - 130) + \delta(f + 130)] * (1/2)[\delta(f + 250) - \delta(f - 250)]$
\n $X(f) = (-3/4)[\delta(f + 120) - \delta(f - 380) + \delta(f + 380) - \delta(f - 120)]$

Highest frequency is 380 Hz. Therefore the Nyquist rate is 760 samples/second.

(b)
$$
x(t) = 18\operatorname{sinc}(3t) * \delta_{11}(t)
$$

 $X(f) = 6 \text{rect}(f / 3) \times (1/11) \delta_{1/11}(f)$

The periodic impulse has impulses at every integer multiple of 1/11 Hz. The rectangle zeros out all impulses at frequencies greater than 1.5 in magnitude. Therefore the highest frequency is the greatest integer multiple of 1/1 that is less than 1.5. That is 16/11 or 1.455 and the Nyquist rate is 2.91 samples/second.

8. Match the magnitude frequency responses to the pole zero diagrams by writing the appropriate letter designation above the pole zero diagram.

