Solution of ECE 316 Test 1 S10

- 1. In the filter and Bode diagram of its frequency response magnitude below, the frequency response of the filter is defined as $H(j\omega) = \frac{V_o(j\omega)}{V_i(j\omega)}$ and the operational amplifier is ideal.
 - (a) If the transfer function H(s) is expressed in the form

$$H(s) = A \frac{1}{s+1/\tau}$$

find A and τ expressed in terms of R_f , R_i and C.

The transfer function is

$$H(s) = -\frac{\frac{R_f / sC}{R_f + 1 / sC}}{R_i} = -\frac{\frac{R_f}{sCR_f + 1}}{R_i} = -\frac{R_f}{R_i}\frac{1}{sCR_f + 1} = -\frac{1}{R_iC}\frac{1}{s + 1 / R_fC}$$

(b) If $R_f = 10 \text{ k}\Omega$ find the numerical values of R_i and C.

The corner frequency is 10,000 radians/second. H($j\omega$) = $-\frac{1}{R_iC}\frac{1}{j\omega+1/R_jC}$. Therefore

$$1/R_f C = 10,000 \Rightarrow C = 1/10,000R_f = 1/10^8 = 10 \text{ nF}$$
.

The low-frequency gain is $-R_f / R_i$. Therefore, since from the Bode diagram it is also 0 dB, $-R_f / R_i = -1$ and $R_i = R_f = 10,000 \Omega$.

- 2. A continuous-time system has a transfer function $H(s) = \frac{s+1}{s(s+4)}$.
 - (a) At very low frequencies what slope (in dB/decade) does the Bode diagram of the magnitude frequency response approach and what phase angle (in radians) does the phase approach?

At very low frequencies $H(j\omega) \cong \frac{1}{j4\omega}$ and the system is approximately an integrator, the slope is -20 dB/decade and the phase is $-\pi/2$ radians.

(b) At very high frequencies what slope (in dB/decade) does the Bode diagram of the magnitude frequency response approach and what phase angle (in radians) does the phase approach?

At very high frequencies $H(j\omega) \cong \frac{j\omega}{(j\omega)^2} = \frac{1}{j\omega}$ and the system is again approximately an integrator, the slope is -20 dB/decade and the phase is $-\pi/2$ radians.

Change the transfer function to $H(s) = \frac{s-1}{s(s+4)}$ and repeat parts (a) and (b).

(a) repeated

At very low frequencies $H(j\omega) \cong \frac{-1}{j4\omega}$ and the system is approximately an integrator, the slope is -20 dB/decade and the phase is $\pi/2$ radians.

(b) repeated

At very high frequencies $H(j\omega) \cong \frac{j\omega}{(j\omega)^2} = \frac{1}{j\omega}$ and the system is again approximately an integrator, the slope is -20 dB/decade and the phase is $-\pi/2$ radians.

- 3. A continuous-time system has a transfer function $H(s) = \frac{1}{s^2 + 3s + 20}$.
 - (a) At very low frequencies what slope (in dB/decade) does the Bode diagram of the magnitude frequency response approach and what phase angle (in radians) does the phase approach?

At very low frequencies $H(j\omega) \cong \frac{1}{20}$ and the system is approximately a frequency-independent gain, the slope is 0 dB/decade and the phase is 0 radians.

(b) At very high frequencies what slope (in dB/decade) does the Bode diagram of the magnitude frequency response approach and what phase angle (in radians) does the phase approach?

At very high frequencies $H(j\omega) \cong \frac{1}{(j\omega)^2}$ and the system is approximately a double integrator, the slope is -40 dB/decade and the phase is $-\pi$ radians.

- 4. A digital filter has a transfer function $H(z) = \frac{z}{z 0.5}$. Its excitation is $x[n] = \cos(2\pi n / N)$ and its response can be expressed in the form $y[n] = A\cos(2\pi n / N \theta)$.
 - (a) At what numerical radian frequency $-\pi \le \Omega < \pi$ is the amplitude of y[n] a maximum? $(H(e^{j\Omega}) = H(z)|_{z \to e^{j\Omega}})$. (Be sure to carefully observe the limits and inequalities in $-\pi \le \Omega < \pi$.)

$$\mathbf{H}\left(e^{j\Omega}\right) = \frac{e^{j\Omega}}{e^{j\Omega} - 0.5} \Rightarrow \left|\mathbf{H}\left(e^{j\Omega}\right)\right| = \frac{1}{\left|e^{j\Omega} - 0.5\right|}$$

The maximum magnitude occurs at $\Omega = 0$ and is $|H(e^{j0})| = \frac{1}{|1 - 0.5|} = 2$.

(b) At what numerical radian frequency $-\pi \leq \Omega < \pi$ is the amplitude of y[n] a minimum?

The maximum magnitude occurs at $\Omega = -\pi$ and is $|H(e^{-j\pi})| = \frac{1}{|-1-0.5|} = 2/3$.

(c) If N = 4, what is the numerical value of θ in radians?

$$\theta = \measuredangle \operatorname{H}(e^{j\Omega}), \Omega = 2\pi / N = \pi / 2 \Longrightarrow \theta = \measuredangle \left(\frac{e^{j\pi/2}}{e^{j\pi/2} - 0.5}\right) = \pi / 2 - \measuredangle \left(e^{j\pi/2} - 0.5\right)$$

$$\theta = \pi / 2 - \measuredangle (j - 0.5) = \pi / 2 - 2.0344 = -0.4636$$
 radians

Solution of ECE 316 Test 1 S10

- 1. In the filter and Bode diagram of its frequency response magnitude below, the frequency response of the filter is defined as $H(j\omega) = \frac{V_o(j\omega)}{V_i(j\omega)}$ and the operational amplifier is ideal.
 - (a) If the transfer function H(s) is expressed in the form

$$H(s) = A \frac{1}{s+1/\tau}$$

find A and τ expressed in terms of R_i , R_i and C.

The transfer function is

$$H(s) = -\frac{\frac{R_f / sC}{R_f + 1 / sC}}{R_i} = -\frac{\frac{R_f}{sCR_f + 1}}{R_i} = -\frac{R_f}{R_i} \frac{1}{sCR_f + 1} = -\frac{1}{R_iC} \frac{1}{s + 1 / R_fC}$$

(b) If $R_i = 10 \text{ k}\Omega$ find the numerical values of R_i and C.

The corner frequency is 1,000 radians/second. H($j\omega$) = $-\frac{1}{R_iC}\frac{1}{j\omega + 1/R_fC}$. Therefore

$$1/R_f C = 1,000 \implies C = 1/1,000R_f = 1/10^7 = 100 \text{ nF}$$
.

The low-frequency gain is $-R_f / R_i$. Therefore, since from the Bode diagram it is also 20 dB, $-R_f / R_i = -10$ and $R_i = R_f / 10 = 1,000 \Omega$.

- 2. A continuous-time system has a transfer function $H(s) = \frac{s+1}{(s+10)(s+4)}$.
 - (a) At very low frequencies what slope (in dB/decade) does the Bode diagram of the magnitude frequency response approach and what phase angle (in radians) does the phase approach?

At very low frequencies $H(j\omega) \cong \frac{1}{40}$ and the system is approximately a frequency-independent gain, the slope is 0 dB/decade and the phase is 0 radians.

(b) At very high frequencies what slope (in dB/decade) does the Bode diagram of the magnitude frequency response approach and what phase angle (in radians) does the phase approach?

At very high frequencies $H(j\omega) \cong \frac{j\omega}{(j\omega)^2} = \frac{1}{j\omega}$ and the system is again approximately an integrator, the slope is -20 dB/decade and the phase is $-\pi/2$ radians.

Change the transfer function to $H(s) = \frac{s-1}{(s+10)(s+4)}$ and repeat parts (a) and (b).

(a) repeated

At very low frequencies $H(j\omega) \cong \frac{-1}{40}$ and the system is approximately a frequency-independent gain, the slope is 0 dB/decade and the phase is $\pm \pi$ radians.

(b) repeated

At very high frequencies $H(j\omega) \cong \frac{j\omega}{(j\omega)^2} = \frac{1}{j\omega}$ and the system is again approximately an integrator, the slope is -20 dB/decade and the phase is $-\pi/2$ radians.

- 3. A continuous-time system has a transfer function $H(s) = \frac{s}{s^2 + 3s + 20}$.
 - (a) At very low frequencies what slope (in dB/decade) does the Bode diagram of the magnitude frequency response approach and what phase angle (in radians) does the phase approach?

At very low frequencies $H(j\omega) \cong \frac{j\omega}{20}$ and the system is approximately a differentiator, the slope is +20 dB/decade and the phase is $\pi/2$ radians.

(b) At very high frequencies what slope (in dB/decade) does the Bode diagram of the magnitude frequency response approach and what phase angle (in radians) does the phase approach?

At very high frequencies $H(j\omega) \cong \frac{1}{j\omega}$ and the system is approximately a double integrator, the slope is -20 dB/decade and the phase is $-\pi/2$ radians.

- 4. A digital filter has a transfer function $H(z) = \frac{z}{z 0.3}$. Its excitation is $x[n] = \cos(2\pi n / N)$ and its response can be expressed in the form $y[n] = A\cos(2\pi n / N \theta)$.
 - (a) At what numerical radian frequency $-\pi \le \Omega < \pi$ is the amplitude of y[n] a maximum? $(H(e^{j\Omega}) = H(z)|_{z \to e^{j\Omega}})$. (Be sure to carefully observe the limits and inequalities in $-\pi \le \Omega < \pi$.)

$$\mathbf{H}\left(e^{j\Omega}\right) = \frac{e^{j\Omega}}{e^{j\Omega} - 0.3} \Longrightarrow \left|\mathbf{H}\left(e^{j\Omega}\right)\right| = \frac{1}{\left|e^{j\Omega} - 0.3\right|}$$

The maximum magnitude occurs at $\Omega = 0$ and is $|H(e^{j0})| = \frac{1}{|1-0.3|} = 0.1429$.

(b) At what numerical radian frequency $-\pi \le \Omega < \pi$ is the amplitude of y[n] a minimum?

The maximum magnitude occurs at $\Omega = -\pi$ and is $|H(e^{-j\pi})| = \frac{1}{|-1-0.3|} = 0.769$.

(c) If N = 4, what is the numerical value of θ in radians?

$$\theta = \measuredangle \operatorname{H}(e^{j\Omega}), \Omega = 2\pi / N = \pi / 2 \Longrightarrow \theta = \measuredangle \left(\frac{e^{j\pi/2}}{e^{j\pi/2} - 0.3}\right) = \pi / 2 - \measuredangle \left(e^{j\pi/2} - 0.3\right)$$

$$\theta = \pi / 2 - \measuredangle (j - 0.3) = \pi / 2 - 1.8623 = -0.2915$$
 radians

Solution of ECE 316 Test 1 S10

- 1. In the filter and Bode diagram of its frequency response magnitude below, the frequency response of the filter is defined as $H(j\omega) = \frac{V_o(j\omega)}{V_i(j\omega)}$ and the operational amplifier is ideal.
 - (a) If the transfer function H(s) is expressed in the form

$$H(s) = A \frac{1}{s+1/\tau}$$

find A and τ expressed in terms of R_i , R_i and C.

The transfer function is

$$H(s) = -\frac{\frac{R_f / sC}{R_f + 1 / sC}}{R_i} = -\frac{\frac{R_f}{sCR_f + 1}}{R_i} = -\frac{R_f}{R_i} \frac{1}{sCR_f + 1} = -\frac{1}{R_iC} \frac{1}{s + 1 / R_fC}$$

(b) If $R_i = 10 \text{ k}\Omega$ find the numerical values of R_i and C.

The corner frequency is 100,000 radians/second. H($j\omega$) = $-\frac{1}{R_i C} \frac{1}{j\omega + 1/R_f C}$. Therefore

$$1 / R_f C = 100,000 \Rightarrow C = 1 / 100,000 R_f = 1 / 10^9 = 1 \text{ nF}.$$

The low-frequency gain is $-R_f / R_i$. Therefore, since from the Bode diagram it is also -20 dB, $-R_f / R_i = -0.1$ and $R_i = 10R_f = 100,000 \Omega$.

- 2. A continuous-time system has a transfer function $H(s) = \frac{s+1}{s^2(s+4)}$.
 - (a) At very low frequencies what slope (in dB/decade) does the Bode diagram of the magnitude frequency response approach and what phase angle (in radians) does the phase approach?

At very low frequencies $H(j\omega) \cong \frac{1}{4(j\omega)^2}$ and the system is approximately a double integrator, the slope is -40 dB/decade and the phase is $\pm \pi$ radians.

(b) At very high frequencies what slope (in dB/decade) does the Bode diagram of the magnitude frequency response approach and what phase angle (in radians) does the phase approach?

At very high frequencies $H(j\omega) \cong \frac{j\omega}{(j\omega)^3} = \frac{1}{(j\omega)^2}$ and the system is again approximately a double integrator, the slope is -40 dB/decade and the phase is $\pm \pi$ radians.

Change the transfer function to $H(s) = \frac{s-1}{s^2(s+4)}$ and repeat parts (a) and (b).

(a) repeated

At very low frequencies $H(j\omega) \cong \frac{-1}{4(j\omega)^2}$ and the system is approximately a double-integrator, the slope is -40 dB/decade and the phase is 0 radians.

(b) repeated

At very high frequencies $H(j\omega) \cong \frac{j\omega}{(j\omega)^3} = \frac{1}{(j\omega)^2}$ and the system is again approximately a doubleintegrator, the slope is -40 dB/decade and the phase is $\pm \pi$ radians.

- 3. A continuous-time system has a transfer function $H(s) = \frac{s^2}{s^2 + 3s + 20}$.
 - (a) At very low frequencies what slope (in dB/decade) does the Bode diagram of the magnitude frequency response approach and what phase angle (in radians) does the phase approach?

At very low frequencies $H(j\omega) \cong \frac{(j\omega)^2}{20}$ and the system is approximately a double differentiator, the slope is +40 dB/decade and the phase is $\pm \pi$ radians.

(b) At very high frequencies what slope (in dB/decade) does the Bode diagram of the magnitude frequency response approach and what phase angle (in radians) does the phase approach?

At very high frequencies $H(j\omega) \cong 1$ and the system is approximately a frequency-independent gain, the slope is 0 dB/decade and the phase is 0 radians.

- 4. A digital filter has a transfer function $H(z) = \frac{z}{z 0.8}$. Its excitation is $x[n] = \cos(2\pi n / N)$ and its response can be expressed in the form $y[n] = A\cos(2\pi n / N \theta)$.
 - (a) At what numerical radian frequency $-\pi \le \Omega < \pi$ is the amplitude of y[n] a maximum? $(H(e^{j\Omega}) = H(z)|_{z \to e^{j\Omega}})$. (Be sure to carefully observe the limits and inequalities in $-\pi \le \Omega < \pi$.)

$$\mathbf{H}\left(e^{j\Omega}\right) = \frac{e^{j\Omega}}{e^{j\Omega} - 0.8} \Rightarrow \left|\mathbf{H}\left(e^{j\Omega}\right)\right| = \frac{1}{\left|e^{j\Omega} - 0.8\right|}$$

The maximum magnitude occurs at $\Omega = 0$ and is $|H(e^{j0})| = \frac{1}{|1 - 0.8|} = 5$.

(b) At what numerical radian frequency $-\pi \le \Omega < \pi$ is the amplitude of y[n] a minimum?

The maximum magnitude occurs at $\Omega = -\pi$ and is $|H(e^{-j\pi})| = \frac{1}{|-1-0.8|} = 0.5556$.

(c) If N = 4, what is the numerical value of θ in radians?

$$\theta = \measuredangle \operatorname{H}(e^{j\Omega}), \Omega = 2\pi / N = \pi / 2 \Longrightarrow \theta = \measuredangle \left(\frac{e^{j\pi/2}}{e^{j\pi/2} - 0.8}\right) = \pi / 2 - \measuredangle \left(e^{j\pi/2} - 0.8\right)$$
$$\theta = \pi / 2 - \measuredangle \left(j - 0.5\right) = \pi / 2 - 2.2455 = -0.6747 \text{ radians}$$