
Solution of ECE 316 Test 3 S10 
 

1. The loop transfer function for a discrete-time feedback system has N finite poles, all inside the unit circle of the z 
 plane, and M finite zeros, also all inside the unit circle.  It has an adjustable gain factor K.   
 
 (a) What relationship between N and M guarantees that, at some finite positive value of K, the system  
 will become unstable? 
 
  If M is less than N, the system will become unstable at some finite positive value of K because at least one 
  branch of the root locus must terminate on a zero at infinity.  Also, if M is greater than N at least one pole 
  is at infinity and the root locus will begin on it, making the system unstable.  The case M > N  creates a  
  non-causal system which, therefore, cannot be realized physically.  So the precise answer is N ≠ M .   
  However, because the non-causal case is not realizable I counted as correct N > M .  I also counted as  
  correct M > N because, strictly speaking it is correct even though the system is not realizable. 
 
 (b) Change the description of the loop transfer function to allow some of the finite zeros to be outside  
 the unit circle.  How does this change the answer to part (a), if at all? 
 
  If any of the finite zeros is outside the unit circle, the system will become unstable at a finite positive  
  value of K, regardless of the values of N and M.  So the criterion for instability does change. 
 
2. A continuous-time unity-gain (tracking) feedback system has a forward-path transfer function with exactly one 
 pole at the origin of the s plane.   
 
 (a) Describe in as much detail as possible the steady-state error signal in response to a step excitation. 
 
  This is a type one system and the steady-state error for step excitation will be zero. 
 
 (b) Describe in as much detail as possible the steady-state error signal in response to a ramp excitation. 
 
  For a type one system in response to a ramp excitation, the steady-error will be non-zero, but finite. 
 
3. The transfer function of a continuous-time system has one finite pole in the open left half-plane at s = s0   
 and no finite zeros.  If you wanted to make its response to a step excitation approach its final value faster how 
 would you change s0 ? 
 
 Make s0  more negative.  Some students answered "make it bigger".  For real numbers, the usual mathematical 
 interpretation of "bigger" is "greater than" or "more positive" and that is not correct. 
 



4. The transfer function of a discrete-time system has two complex-conjugate finite poles inside the open unit circle 
 and two zeros at z = 0 .  Its unit sequence response overshoots and rings before settling to its final value. 
 
 (a) If you want to increase the rate at which it rings but not change the settling time how would you   
  move the poles? 
 
  Keep their distance from the origin the same but make their angular separation from the positive real axis 
  larger. 
 
 (b)  If you want to decrease the settling time but keep the ringing rate the same how would you move  
  the poles? 
 
  Keep the angles of the poles the same but decrease their distance from the origin. 
 

  These answers can be seen in the inverse z transform of H z( ) = z2

z2 + 2α cos Ω0( )z +α 2  which has two  

  zeros at z = 0  and two finite complex-conjugate poles.  The inverse transform has terms of the form 
 

α n cos Ω0n( )u n[ ]  and α n sin Ω0n( )u n[ ]  
 

  α  is the radius out to the pole location and Ω0  is the angle to the pole from the positive real axis.  So a  
  larger α  creates a more slowly decaying exponentially-damped response and a larger Ω0  creates a more 
  rapidly oscillating cosine or sine. 
 

5. A continuous-time system has a transfer function H1 s( ) = 1
s + a

 and a < 0  making it unstable.  In an effort to 

 stabilize the system, feedback with transfer function H2 s( ) = K  is used (K is a constant).   
 
 (a) What is the location of the pole of the feedback system?  
 
 (b) What relation between a and K makes the system stable? 
 
 __________________________________________________________________________________________ 
 

 The system transfer function is H s( ) =
1

s + a
1+ K

s + a

=
1

s + a + K
.  The pole is at s = −a − K .  For stability we want  

 −a − K < 0 .   Therefore, if −a − K < 0  that means that K > −a  for stability. 
 

6. The loop transfer function of a continuous-time feedback system is T s( ) = K s −1( )
s s2 + 3( ) .  How many of its  branches 

 will approach infinity and at what numerical angles (in radians) from the positive real axis (counter-clockwise 
 being a positive angle)?  
 
 There are three finite poles and one finite zero.  Therefore two branches will approach infinity and their angles 
 will be ±π / 2  or π / 2 and 3π / 2 . 
 

7. The loop transfer function of a discrete-time feedback system is T z( ) = z z + 0.2( )
z − 0.1( ) z − 0.8( ) z2 + 0.6( ) .   What 

 regions of the real axis in the z plane are part of the root locus? 
 
 There are zeros on the real axis at z = 0  and at z = −0.2  and there are poles on the real axis at z = 0.1  and at  
 z = 0.8 .  The allowed regions are the ones for which the sum of the number of zeros and/or poles lying to the 
 right is an odd number.  Therefore the allowed regions are 0.1 < z < 0.8  and −0.2 < z < 0 . 
 



8. A continuous-time feedback system has a forward-path transfer function H1 =
K

s + 2( ) s + 5( )  and a 

 feedback-path  transfer function H2 =
s + a
s +11( ) . What range of numerical values of a makes this system stable for 

 all finite positive values of K?  (The root locus will have two branches that break out of the real axis in the left 
 half-plane and approach two vertical asymptotes.  If the asymptotes are in the left half-plane those two branches 
 will never cross into the right half-plane.) 
 
 The root locus will have two branches approaching infinity.   
 
 Case 1.  If the zero is to the left of -5 these branches will break out of the real axis between   
   s = −2 and s = −5  and the pole at s = −11  will approach the zero along the real axis.   
 
 Case 2.  If the zero is to the right of -5, these branches will break out of the real axis between   
   s = −5 and s = −11  and the pole at s = −2  will approach the zero along the real axis.  If the zero is 
   in the right half-plane, at some finite positive value of K the system will become unstable.  So,  
   for stability, a must be a positive number. 
 
 We want the centroid of the asymptotes to lie in the left half-plane.  The centroid lies at the sum of the finite poles 
 minus the sum of the finite zeros divided by m, the number of finite poles minus the number of finite zeros.  So 

 the centroid is at or −2 − 5 −11+ a
2

.  To make sure the centroid is in the left half-plane we want    

 −2 − 5 −11+ a
2

< 0  implying that a < 18 .  Therefore, overall, the range of a for stability is 0 < a < 18  placing the 

 zero between -18 and zero. 
 

9. A continuous-time feedback system has a forward-path transfer function H1 s( ) = 10
s +12

 and a feedback-

 path  transfer function H2 s( ) = 1
s + a

 , a > 0 .  What range of real values of a would make the step response 

 overshoot and ring before settling while also keeping the system stable? 
 

H s( ) =
10
s +12

1+ 10
s +12

1
s + a

=
10 s + a( )

s2 + 12 + a( )s +12a +10  

 

s =
− 12 + a( ) ± 12 + a( )2 − 4 12a +10( )

2
=
− 12 + a( ) ± a2 − 24a +104

2
 

 
 To overshoot and ring the poles must occur in complex-conjugate pairs.  This will occur if a2 − 24a +104 < 0 .  
 Solving a2 − 24a +104 = 0  we get 18.3246 and 5.6754 .  If a is less than 18.3246  and greater than 5.6754, we 
 get complex-conjugate poles.  In that range the real part of s is guaranteed negative so the system is stable.  So the 
 range of a values is 5.6754 < a < 18.3246 . 
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1. A continuous-time system has a transfer function H1 s( ) = 1
s + a

 and a < 0  making it unstable.  In an effort to 

 stabilize the system, feedback with transfer function H2 s( ) = K  is used (K is a constant).   
 
 (a) What is the location of the pole of the feedback system?  
 
 
 (b) What relation between a and K makes the system stable? 
 

 The system transfer function is H s( ) =
1

s + a
1+ K

s + a

=
1

s + a + K
.  The pole is at s = −a − K .  For stability we want  

 −a − K < 0 .   Therefore, if −a − K < 0  that means that K > −a  for stability. 
 

2. The loop transfer function of a continuous-time feedback system is T s( ) = K s −1( )
s s2 + 3( ) .  How many of its  branches 

 will approach infinity and at what numerical angles (in radians) from the positive real axis (counter-
 clockwise being a positive angle)?  
 
 There are three finite poles and one finite zero.  Therefore two branches will approach infinity and their angles 
 will be ±π / 2  or π / 2 and 3π / 2 . 
 
3. The loop transfer function for a discrete-time feedback system has N finite poles, all inside the unit circle of the z 
 plane, and M finite zeros, also all inside the unit circle.  It has an adjustable gain factor K.   
 
 (a) What relationship between N and M guarantees that, at some finite positive value of K, the system  
 will become unstable? 
 
  If M is less than N, the system will become unstable at some finite positive value of K because at least one 
  branch of the root locus must terminate on a zero at infinity.  Also, if M is greater than N at least one pole 
  is at infinity and the root locus will begin on it, making the system unstable.  The case M > N  creates a  
  non-causal system which, therefore, cannot be realized physically.  So the precise answer is N ≠ M .   
  However, because the non-causal case is not realizable I counted as correct N > M .  I also counted as  
  correct M > N because, strictly speaking it is correct even though the system is not realizable. 
 
 (b) Change the description of the loop transfer function to allow some of the finite zeros to be outside  
 the unit circle.  How does this change the answer to part (a), if at all? 
 
  If any of the finite zeros is outside the unit circle, the system will become unstable at a finite positive  
  value of K, regardless of the values of N and M.  So the criterion for instability does change. 



 
4. A continuous-time unity-gain (tracking) feedback system has a forward-path transfer function with exactly one 
 pole at the origin of the s plane.   
 
 (a) Describe in as much detail as possible the steady-state error signal in response to a step excitation. 
 
  This is a type one system and the steady-state error for step excitation will be zero. 
 
 (b) Describe in as much detail as possible the steady-state error signal in response to a ramp excitation. 
 
  For a type one system in response to a ramp excitation, the steady-error will be non-zero, but finite. 
 
5. The transfer function of a continuous-time system has one finite pole in the open left half-plane at s = s0   
 and no finite zeros.  If you wanted to make its response to a step excitation approach its final value faster how 
 would you change s0 ? 
 
 Make s0  more negative.  Some students answered "make it bigger".  For real numbers, the usual mathematical 
 interpretation of "bigger" is "greater than" or "more positive" and that is not correct. 
 
6. The transfer function of a discrete-time system has two complex-conjugate finite poles inside the open unit circle 
 and two zeros at z = 0 .  Its unit sequence response overshoots and rings before settling to its final value. 
 
 (a) If you want to increase the rate at which it rings but not change the settling time how would you   
  move the poles? 
 
  Keep their distance from the origin the same but make their angular separation from the positive real axis 
  larger. 
 
 (b) If you want to decrease the settling time but keep the ringing rate the same how would you move  
  the poles? 
 
  Keep the angles of the poles the same but decrease their distance from the origin. 
 

  These answers can be seen in the inverse z transform of H z( ) = z2

z2 + 2α cos Ω0( )z +α 2  which has two  

  zeros at z = 0  and two finite complex-conjugate poles.  The inverse transform has terms of the form 
 

α n cos Ω0n( )u n[ ]  and α n sin Ω0n( )u n[ ]  
 

  α  is the radius out to the pole location and Ω0  is the angle to the pole from the positive real axis.  So a  
  larger α  creates a more slowly decaying exponentially-damped response and a larger Ω0  creates a more 
  rapidly oscillating cosine or sine. 
 

7. The loop transfer function of a discrete-time feedback system is T z( ) = z z − 0.3( )
z − 0.2( ) z + 0.5( ) z2 + 0.6( ) .   What 

 regions of the real axis in the z plane are part of the root locus? 
 
 There are zeros on the real axis at z = 0  and at z = 0.3  and there are poles on the real axis at z = 0.2  and at  
 z = −0.5 .  The allowed regions are the ones for which the sum of the number of zeros and/or poles lying to the 
 right is an odd number.  Therefore the allowed regions are 0.2 < z < 0.3  and −0.5 < z < 0 . 
 
 
 



8. A continuous-time feedback system has a forward-path transfer function H1 =
K

s + 2( ) s + 5( )  and a 

 feedback-path  transfer function H2 =
s + a
s + 7( ) . What range of numerical values of a makes this system stable for 

 all finite positive values of K?  (The root locus will have two branches that break out of the real axis in the left 
 half-plane and approach two vertical asymptotes.  If the asymptotes are in the left half-plane those two branches 
 will never cross into the right half-plane.)   
 
 The root locus will have two branches approaching infinity.   
 
 Case 1.  If the zero is to the left of -5 these branches will break out of the real axis between   
   s = −2 and s = −5  and the pole at s = −7  will approach the zero along the real axis.   
 
 Case 2.  If the zero is to the right of -5, these branches will break out of the real axis between   
   s = −5 and s = −7  and the pole at s = −2  will approach the zero along the real axis.  If the zero is 
   in the right half-plane, at some finite positive value of K the system will become unstable.  So,  
   for stability, a must be a positive number. 
 
 We want the centroid of the asymptotes to lie in the left half-plane.  The centroid lies at the sum of the finite poles 
 minus the sum of the finite zeros divided by m, the number of finite poles minus the number of finite zeros.  So 

 the centroid is at or −2 − 5 − 7 + a
2

.  To make sure the centroid is in the left half-plane we want    

 −2 − 5 − 7 + a
2

< 0  implying that a < 14 .  Therefore, overall, the range of a for stability is 0 < a < 14  placing the 

 zero between -14 and zero. 
 

9. A continuous-time feedback system has a forward-path transfer function H1 s( ) = 4
s + 8

 and a feedback- path 

 transfer function H2 s( ) = 1
s + a

 , a > 0 .  What range of real values of a would make the step response 

 overshoot and ring before settling while also keeping the system stable?  
 

H s( ) =
4

s + 8
1+ 4

s + 8
1

s + a

=
4 s + a( )

s2 + 8 + a( )s + 8a + 4  

 

s =
− 8 + a( ) ± 8 + a( )2 − 4 8a + 4( )

2
=
− 8 + a( ) ± a2 −16a + 48

2
 

 
 To overshoot and ring the poles must occur in complex conjugate pairs.  This will occur if a2 −16a + 48 < 0 .  
 Solving a2 −16a + 48 = 0  we get 12 and 4 .  If a is less than 12 and greater than 4, we get complex-conjugate 
 poles.  If a were less than -8, the  poles would be in the right half-plane.   So the range of a values is 4 < a < 12 . 
 
 
 



 
 

Solution of ECE 316 Test 3 S10 
 

1. The transfer function of a continuous-time system has one finite pole in the open left half-plane at s = s0   
 and no finite zeros.  If you wanted to make its response to a step excitation approach its final value faster how 
 would you change s0 ? 
 
 Make s0  more negative.  Some students answered "make it bigger".  For real numbers, the usual mathematical 
 interpretation of "bigger" is "greater than" or "more positive" and that is not correct. 
 
2. The transfer function of a discrete-time system has two complex-conjugate finite poles inside the open unit circle 
 and two zeros at z = 0 .  Its unit sequence response overshoots and rings before settling to its final value. 
 
 (a)  If you want to increase the rate at which it rings but not change the settling time how would you   
  move the poles? 
 
  Keep their distance from the origin the same but make their angular separation from the positive real axis 
  larger. 
 
 (b) If you want to decrease the settling time but keep the ringing rate the same how would you move  
  the poles? 
 
  Keep the angles of the poles the same but decrease their distance from the origin. 
 

  These answers can be seen in the inverse z transform of H z( ) = z2

z2 + 2α cos Ω0( )z +α 2  which has two  

  zeros at z = 0  and two finite complex-conjugate poles.  The inverse transform has terms of the form 
 

α n cos Ω0n( )u n[ ]  and α n sin Ω0n( )u n[ ]  
 

  α  is the radius out to the pole location and Ω0  is the angle to the pole from the positive real axis.  So a  
  larger α  creates a more slowly decaying exponentially-damped response and a larger Ω0  creates a more 
  rapidly oscillating cosine or sine. 
 

3. A continuous-time system has a transfer function H1 s( ) = 1
s + a

 and a < 0  making it unstable.  In an effort to 

 stabilize the system, feedback with transfer function H2 s( ) = K  is used (K is a constant).   
 
 (a) What is the location of the pole of the feedback system? Pole at s = ____________ 
 
 
 (b) What relation between a and K makes the system stable? 
 

 The system transfer function is H s( ) =
1

s + a
1+ K

s + a

=
1

s + a + K
.  The pole is at s = −a − K .  For stability we want  

 −a − K < 0 .   Therefore, if −a − K < 0  that means that K > −a  for stability. 
 

4. The loop transfer function of a continuous-time feedback system is T s( ) = K s −1( )
s s2 + 3( ) .  How many of its  branches 

 will approach infinity and at what numerical angles (in radians) from the positive real axis (counter-
 clockwise being a positive angle)?  
 



 There are three finite poles and one finite zero.  Therefore two branches will approach infinity and their angles 
 will be ±π / 2  or π / 2 and 3π / 2 . 
 
 
5. The loop transfer function for a discrete-time feedback system has N finite poles, all inside the unit circle of the z 
 plane, and M finite zeros, also all inside the unit circle.  It has an adjustable gain factor K.   
 
 (a) What relationship between N and M guarantees that, at some finite positive value of K, the system  
  will become unstable? 
 
  If M is less than N, the system will become unstable at some finite positive value of K because at least one 
  branch of the root locus must terminate on a zero at infinity.  Also, if M is greater than N at least one pole 
  is at infinity and the root locus will begin on it, making the system unstable.  The case M > N  creates a  
  non-causal system which, therefore, cannot be realized physically.  So the precise answer is N ≠ M .   
  However, because the non-causal case is not realizable I counted as correct N > M .  I also counted as  
  correct M > N because, strictly speaking it is correct even though the system is not realizable. 
 
 (b) Change the description of the loop transfer function to allow some of the finite zeros to be outside  
  the unit circle.  How does this change the answer to part (a), if at all? 
 
  If any of the finite zeros is outside the unit circle, the system will become unstable at a finite positive  
  value of K, regardless of the values of N and M.  So the criterion for instability does change. 
 
6. A continuous-time unity-gain (tracking) feedback system has a forward-path transfer function with exactly one 
 pole at the origin of the s plane.   
 
 (a) Describe in as much detail as possible the steady-state error signal in response to a step excitation. 
 
  This is a type one system and the steady-state error for step excitation will be zero. 
 
 (b) Describe in as much detail as possible the steady-state error signal in response to a ramp excitation. 
 
  For a type one system in response to a ramp excitation, the steady-error will be non-zero, but finite. 
 

7. The loop transfer function of a discrete-time feedback system is T z( ) = z z + 0.7( )
z − 0.9( ) z + 0.1( ) z2 + 0.6( ) .   What 

 regions of the real axis in the z plane are part of the root locus? 
 
 There are zeros on the real axis at z = 0  and at z = −0.7  and there are poles on the real axis at z = −0.1  and at  
 z = 0.9 .  The allowed regions are the ones for which the sum of the number of zeros and/or poles lying to the 
 right is an odd number.  Therefore the allowed regions are 0 < z < 0.9  and −0.7 < z < −0.1 . 
 
 
 



8. A continuous-time feedback system has a forward-path transfer function H1 =
K

s + 8( ) s + 5( )  and a 

 feedback-path  transfer function H2 =
s + a
s +11( ) . What range of numerical values of a makes this system stable for 

 all finite positive values of K?  (The root locus will have two branches that break out of the real axis in the left 
 half-plane and approach two vertical asymptotes.  If the asymptotes are in the left half-plane those two branches 
 will never cross into the right half-plane.)   
 
 The root locus will have two branches approaching infinity.   
 
 Case 1.  If the zero is to the left of -8 these branches will break out of the real axis between   
   s = −5 and s = −8  and the pole at s = −11 will approach the zero along the real axis.   
 
 Case 2.  If the zero is to the right of -8, these branches will break out of the real axis between   
   s = −8 and s = −11  and the pole at s = −5  will approach the zero along the real axis.  If the zero is 
   in the right half-plane, at some finite positive value of K the system will become unstable.  So, for 
   stability, a must be a positive number. 
 
 We want the centroid of the asymptotes to lie in the left half-plane.  The centroid lies at the sum of the finite poles 
 minus the sum of the finite zeros divided by m, the number of finite poles minus the number of finite zeros.  So 

 the centroid is at or −5 − 8 −11+ a
2

.  To make sure the centroid is in the left half-plane we want    

 −5 − 8 −11+ a
2

< 0  implying that a < 24 .  Therefore, overall, the range of a for stability is 0 < a < 24  placing 

 the zero between -24 and zero. 
 

9. A continuous-time feedback system has a forward-path transfer function H1 s( ) = 7
s + 3

 and a feedback- path 

 transfer function H2 s( ) = 1
s + a

 , a > 0 .  What range of real values of a would make the step response 

 overshoot and ring before settling while also keeping the system stable? 
 

H s( ) =
7

s + 3
1+ 7

s + 3
1

s + a

=
10 s + a( )

s2 + 3+ a( )s + 3a + 7  

 

s =
− 3+ a( ) ± 3+ a( )2 − 4 3a + 7( )

2
=
− 3+ a( ) ± a2 − 6a −19

2
 

 
 To overshoot and ring the poles must occur in complex conjugate pairs.  This will occur if a2 − 6a −19 < 0 .  
 Solving a2 − 6a −19 = 0  we get 8.2915 and -2.2915 .  If a is less than 8.2915 and greater than -2.2915, we 
 get complex-conjugate poles.  If a were less than -3, the poles would be in the right half-plane.   So the range of 
 a values is −2.2915 < a < 8.2915 .  But to observe the restriction above, a > 0 , that range should be   
 0 < a < 8.2915 . 
 
 
 
 


