Solution ofEECS 316 Test 2 Su10

- 1. A signal $x(t) = cos(200\pi t)$ is impulse sampled to form $x_{\delta}(t) = cos(200\pi t)\delta_{T_{s}}(t)$, $T_{s} = 1/f_{s}$. For each sampling rate f_s below find the first three positive numerical values of frequency *f* at which the CTFT of $x_\delta(t)$ is not zero.
	- (a) $f_s = 150$

The impulses in the CTFT will occur at ±100 ± 150*n* . Those values will be 50,100,250,200,... . So the answers are 50, 100, 200.

(b) $f_s = 40$

The impulses in the CTFT will occur at $\pm 100 \pm 40n$. Those values will be 20,60,100,140,180,220,260,... . So the answers are 20, 60, 100.

- 2. A signal $x(t) = 12\operatorname{sinc}(30t)$ is impulse sampled to form $x_{\delta}(t) = 12\operatorname{sinc}(30t)\delta_{T_{s}}(t)$, $T_{s} = 1/f_{s}$. For each sampling rate f_s below find all the numerical frequency ranges between 0 and 200 Hz at which the CTFT of $x_{\delta}(t)$ is zero.
	- (a) $f_s = 150$

The CTFT of the original signal is $X(f) = (2/5) \text{rect}(f/30)$. The CTFT of the impulse-sampled signal is then $X(f) = 150(2/5)\text{rect}(f/30) * \delta_{150}(f)$. The ranges at which the CTFT is NOT zero are

−15 < *f* < 15 , 135 < *f* < 165 , 285 < *f* < 315 , ...

So the ranges of frequencies at which the CTFT IS zero are $15 < f < 135$, $165 < f < 200$

(b) $f_s = 40$

CTFT of the impulse-sampled signal is then $X(f) = 40(2/5) \text{rect}(f/30) * \delta_{40}(f)$. The ranges at which the CTFT is NOT zero are

−15 < *f* < 15 , 25 < *f* < 55 , 65 < *f* < 95 , 105 < *f* < 135 , 145 < *f* < 175 , 185 < *f* < 215 , ...

So the ranges of frequencies at which the CTFT IS zero are

 $15 < f < 25$, $55 < f < 65$, $95 < f < 105$, $135 < f < 145$, $175 < f < 185$.

3. Find the numerical Nyquist rates for the following signals. If a signal is not bandlimited, just write "infinity" or ∞.

(a)
$$
x(t) = 11 \operatorname{tri}(3t) * \delta_1(t)
$$

 $X(f) = (11/3)\text{sinc}^2(f/3)\delta_1(f)$ **Not Bandlimited**

(b)
$$
x(t) = 11\operatorname{sinc}(3t)\delta_1(t) = \delta(t)
$$

 $X(f) = (11/3)\text{rect}(f/3) * \delta_1(f) = 11$ Not Bandlimited

(c) $x(t) = 8 \sin(35t) \cos(20\pi t)$

$$
X(f) = (j2)[\delta(f + 17.5 / \pi) - \delta(f - 17.5 / \pi)] * [\delta(f - 10) + \delta(f + 10)]
$$

\n
$$
X(f) = (j2)[\delta(f + 17.5 / \pi - 10) + \delta(f + 17.5 / \pi + 10) - \delta(f - 17.5 / \pi - 10) - \delta(f - 17.5 / \pi + 10)]
$$

Nyquist rate is $f_{NYO} = 2 \times (17.5 / \pi + 10) = 31.141$

- (d) $x(t) = \int u(t) u(t-3) \sin(28\pi t)$ Time-limited, therefore not Bandlimited
- (e) $x(t) = 4\cos(50\pi t) 6\sin(78\pi t)$ Highest frequency is 39 Hz. $f_{NTQ} = 78$
- 4. A discrete-time system has a transfer function $H(z) = \frac{z^2 1}{z^2 1}$ $\frac{z}{z^2+0.95}$.
	- (a) At what numerical radian frequency or frequencies in the range $-\pi \leq \Omega < \pi$ is the magnitude of this system's frequency response a minimum?

Minimum occurs at $z = \pm 1 \Rightarrow \Omega = -\pi, 0$

(b) At what numerical radian frequency or frequencies in the range $-\pi \leq \Omega < \pi$ is the magnitude of this system's frequency response a maximum?

Maximum occurs at nearest approach to poles at $z = \pm j0.975 \Rightarrow \Omega = \pm \pi / 2$

(c) What is the numerical magnitude in dB of the frequency response at $\Omega = 1.6$.

$$
H(e^{j\Omega}) = \frac{e^{j2\Omega} - 1}{e^{j2\Omega} + 0.95} \Rightarrow H(e^{j2}) = \frac{e^{j3\Omega} - 1}{e^{j3\Omega} + 0.95} = 26.387 e^{-j0.8504} \Rightarrow |H(e^{j\Omega})|_{dB} = 28.428 \text{ dB}
$$

- 5. The frequency response of a continuous-time LTI system is $H(j\omega) = \frac{V_o(j\omega)}{V_i(j\omega)}$. The magnitude Bode diagram for this system is displayed below. (The dashed lines are asymptotes.)
	- (a) List the numerical locations in radians/second of all finite poles.

Poles at 10 and 8000

(b) List the numerical locations in radians/second of all finite zeros.

Zero at 200

(c) A sinusoidal signal $x(t) = 3\sin(1000t)$ volts is applied to the system. What is the numerical amplitude of the sinusoidal response in volts?

Frequency response magnitude at $\omega = 1000$ is about -77 dB. So the output signal response amplitude *A* can be found from

$$
\left.\begin{array}{r}\n\text{one,}\n\\
\text{one,}\n\\
\text{
$$

$$
20 \log_{10} (A/3) = -77 \Rightarrow A = 3 \times 10^{-77/20} = 0.0004238
$$

Solution ofEECS 316 Test 2 Su10

- 1. A signal $x(t) = cos(220\pi t)$ is impulse sampled to form $x_{\delta}(t) = cos(220\pi t)\delta_{T}(t)$, $T_s = 1/f_s$. For each sampling rate f_s below find the first three positive numerical values of frequency *f* at which the CTFT of $x_\delta(t)$ is not zero.
	- (a) $f_s = 150$

The impulses in the CTFT will occur at $\pm 110 \pm 150n$. Those values will be 40,110,260,190,... . So the answers are 40, 110, 190.

(b) $f_s = 40$

The impulses in the CTFT will occur at $\pm 110 \pm 40n$. Those values will be 10,30,50,70,110,150,190,230,270,.... So the answers are 10, 30, 50.

- 2. A signal $x(t) = 12\sin(c(34t))$ is impulse sampled to form $x_{\delta}(t) = 12\sin(c(34t))\delta_{T_{\delta}}(t)$, $T_{s} = 1/f_{s}$. For each sampling rate f_s below find all the numerical frequency ranges between 0 and 200 Hz at which the CTFT of $x_{\delta}(t)$ is zero.
	- (a) $f_s = 150$

The CTFT of the original signal is $X(f) = (6/17)\text{rect}(f/34)$. The CTFT of the impulse-sampled signal is then $X(f) = 150(6/17)\text{rect}(f/34) * \delta_{150}(f)$. The ranges at which the CTFT is NOT zero are

−17 < *f* < 17 , 133 < *f* < 167 , 283 < *f* < 317 , ...

So the ranges of frequencies at which the CTFT IS zero are $17 < f < 133$, $167 < f < 200$

(b) $f_s = 40$

CTFT of the impulse-sampled signal is then $X(f) = 40(6/17)\text{rect}(f/34) * \delta_{40}(f)$. The ranges at which the CTFT is NOT zero are

−17 < *f* < 17 , 23 < *f* < 57 , 63 < *f* < 97 , 103 < *f* < 137 , 143 < *f* < 177 , 183 < *f* < 217 , ...

So the ranges of frequencies at which the CTFT IS zero are

 $17 < f < 23$, $57 < f < 63$, $97 < f < 103$, $137 < f < 143$, $177 < f < 183$.

3. Find the numerical Nyquist rates for the following signals. If a signal is not bandlimited, just write "infinity" or ∞.

(a)
$$
x(t) = 11 \operatorname{tri}(3t) * \delta_1(t)
$$

 $X(f) = (11/3)\text{sinc}^2(f/3)\delta_1(f)$ **Not Bandlimited**

(b)
$$
x(t) = 11\operatorname{sinc}(3t) * \delta_1(t)
$$

 $X(f) = (11/3)\operatorname{rect}(f/3)\delta_1(f)$ Highest frequency is 1 Hz. $f_{NTQ} = 2$

(c) $x(t) = 8\sin(35t)\cos(10\pi t)$

$$
X(f) = (j2)[\delta(f + 17.5 / \pi) - \delta(f - 17.5 / \pi)] * [\delta(f - 5) + \delta(f + 5)]
$$

\n
$$
X(f) = (j2)[\delta(f + 17.5 / \pi - 5) + \delta(f + 17.5 / \pi + 5) - \delta(f - 17.5 / \pi - 5) - \delta(f - 17.5 / \pi + 5)]
$$

Nyquist rate is $f_{NYQ} = 2 \times (17.5 / \pi + 5) = 21.141$

- (d) $x(t) = \int u(t) u(t-3) \sin(28\pi t)$ Time-limited, therefore not Bandlimited
- (e) $x(t) = 4\cos(50\pi t) 6\sin(88\pi t)$ Highest frequency is 44 Hz. $f_{NTQ} = 88$
- 4. A discrete-time system has a transfer function $H(z) = \frac{z^2 1}{z^2 2z}$ $\frac{z}{z^2+0.95}$.
	- (a) At what numerical radian frequency or frequencies in the range $-\pi \leq \Omega < \pi$ is the magnitude of this system's frequency response a minimum?

Minimum occurs at $z = \pm 1 \Rightarrow \Omega = -\pi, 0$

(b) At what numerical radian frequency or frequencies in the range $-\pi \leq \Omega < \pi$ is the magnitude of this system's frequency response a maximum?

Maximum occurs at nearest approach to poles at $z = \pm j0.975 \Rightarrow \Omega = \pm \pi / 2$

(c) What is the numerical magnitude in dB of the frequency response at $\Omega = 1.4$.

$$
H(e^{j\Omega}) = \frac{e^{j2\Omega} - 1}{e^{j2\Omega} + 0.95} \Rightarrow H(e^{j2}) = \frac{e^{j2.8} - 1}{e^{j2.8} + 0.95} = 5.882e^{j1.4232} \Rightarrow |H(e^{j\Omega})|_{dB} = 15.39 \text{ dB}
$$

- 5. The frequency response of a continuous-time LTI system is $H(j\omega) = \frac{V_o(j\omega)}{V_i(j\omega)}$. The magnitude Bode diagram for this system is displayed below. (The dashed lines are asymptotes.)
	- (a) List the numerical locations in radians/second of all finite poles.

Poles at 30 and 7000

(b) (1 pt per correct zero location) List the numerical locations in radians/second of all finite zeros.

Zero at 100

(c) A sinusoidal signal $x(t) = 3\sin(3t)$ volts is applied to the system. What is the numerical amplitude of the sinusoidal response in volts?

Frequency response magnitude at $\omega = 3$ is about -66 dB. So the output signal response amplitude *A* can be found from

$$
20 \log_{10} (A/3) = -66 \Rightarrow A = 3 \times 10^{-66/20} = 0.0015
$$

Solution ofEECS 316 Test 2 Su10

1. A signal $x(t) = cos(160\pi t)$ is impulse sampled to form $x_{\delta}(t) = cos(160\pi t)\delta_{T_{\delta}}(t)$, $T_{s} = 1/f_{s}$. For each sampling rate f_s below find the first three positive numerical values of frequency *f* at which the CTFT of $x_\delta(t)$ is not zero.

(a) $f_s = 150$

The impulses in the CTFT will occur at ±80 ± 150*n* . Those values will be 70,80,220,230,... . So the answers are 70, 80, 220.

(b) $f_s = 40$

The impulses in the CTFT will occur at $\pm 80 \pm 40n$. Those values will be 40,80,120,160,200,240,.... So the answers are 40, 80, 120.

- 2. A signal $x(t) = 12\operatorname{sinc}(26t)$ is impulse sampled to form $x_{\delta}(t) = 12\operatorname{sinc}(26t)\delta_{T}(t)$, $T_{s} = 1/f_{s}$. For each sampling rate f_s below find all the numerical frequency ranges between 0 and 200 Hz at which the CTFT of $x_{\delta}(t)$ is zero.
	- (a) $f_s = 150$

The CTFT of the original signal is $X(f) = (6/13)\text{rect}(f/26)$. The CTFT of the impulse-sampled signal is then $X(f) = 150(6/13)\text{rect}(f/26) * \delta_{150}(f)$. The ranges at which the CTFT is NOT zero are

−13 < *f* < 13 , 137 < *f* < 163 , 287 < *f* < 313 , ...

So the ranges of frequencies at which the CTFT IS zero are $13 < f < 137$, $163 < f < 200$

$$
(b) \qquad f_s = 40
$$

CTFT of the impulse-sampled signal is then $X(f) = 40(6/13)\text{rect}(f/26) * \delta_{40}(f)$. The ranges at which the CTFT is NOT zero are

−13 < *f* < 13 , 27 < *f* < 53 , 67 < *f* < 93 , 107 < *f* < 133 , 147 < *f* < 173 , 187 < *f* < 213 , ...

So the ranges of frequencies at which the CTFT IS zero are

 $13 < f < 27$, $53 < f < 67$, $93 < f < 107$, $133 < f < 147$, $173 < f < 187$.

3. Find the numerical Nyquist rates for the following signals. If a signal is not bandlimited, just write "infinity" or ∞.

(a)
$$
x(t) = 11 \operatorname{tri}(3t) * \delta_1(t)
$$

 $X(f) = (11/3)\text{sinc}^2(f/3)\delta_1(f)$ **Not Bandlimited**

(b)
$$
x(t) = 11\operatorname{sinc}(3t)\delta_1(t) = \delta(t)
$$

 $X(f) = (11/3)\text{rect}(f/3) * \delta_1(f) = 11$ Not Bandlimited

(c) $x(t) = 8 \sin(35t) \cos(30\pi t)$

$$
X(f) = (j2)[\delta(f + 17.5 / \pi) - \delta(f - 17.5 / \pi)] * [\delta(f - 15) + \delta(f + 15)]
$$

\n
$$
X(f) = (j2)[\delta(f + 17.5 / \pi - 15) + \delta(f + 17.5 / \pi + 15) - \delta(f - 17.5 / \pi - 15) - \delta(f - 17.5 / \pi + 15)]
$$

Nyquist rate is $f_{NYO} = 2 \times (17.5 / \pi + 15) = 41.141$

- (d) $x(t) = \int u(t) u(t-3) \sin(28\pi t)$ Time-limited, therefore not Bandlimited
- (e) $x(t) = 4\cos(50\pi t) 6\sin(68\pi t)$ Highest frequency is 34 Hz. $f_{NTQ} = 68$
- 4. A discrete-time system has a transfer function $H(z) = \frac{z^2 1}{z^2 1}$ $\frac{z}{z^2+0.95}$.
	- (a) At what numerical radian frequency or frequencies in the range $-\pi \leq \Omega < \pi$ is the magnitude of this system's frequency response a minimum?

Minimum occurs at $z = \pm 1 \Rightarrow \Omega = -\pi, 0$

(b) At what numerical radian frequency or frequencies in the range $-\pi \leq \Omega < \pi$ is the magnitude of this system's frequency response a maximum?

Maximum occurs at nearest approach to poles at $z = \pm i(0.975 \Rightarrow \Omega = \pm \pi / 2$

(c) What is the numerical magnitude in dB of the frequency response at $\Omega = 1.5$.

$$
H(e^{j\Omega}) = \frac{e^{j2\Omega} - 1}{e^{j2\Omega} + 0.95} \Rightarrow H(e^{j2}) = \frac{e^{j3} - 1}{e^{j3} + 0.95} = 13.601e^{j1.2238} \Rightarrow |H(e^{j\Omega})|_{dB} = 22.67 dB
$$

- 5. The frequency response of a continuous-time LTI system is $H(j\omega) = \frac{V_o(j\omega)}{V_i(j\omega)}$. The magnitude Bode diagram for this system is displayed below. (The dashed lines are asymptotes.)
	- (a) List the numerical locations in radians/second of all finite poles.

Poles at 40 and 9000

(b) List the numerical locations in radians/second of all finite zeros.

Zero at 300

(c) A sinusoidal signal $x(t) = 3\sin(30000t)$ volts is applied to the system. What is the numerical amplitude of the sinusoidal response in volts?

Frequency response magnitude at $\omega = 30000$ is about -90 dB. So the output signal response amplitude *A* can be found from

$$
20 \log_{10} (A/3) = -90 \Rightarrow A = 3 \times 10^{-90/20} = 0.00009487 \text{ or } 9.487 \times 10^{-5}
$$

