Solution of ECE 315 Test 13 F04

1. An LTI system has a transfer function,

$$H(j\omega) = \frac{j3\omega - \omega^2}{1000 - 10\omega^2 + j250\omega} .$$

(a) Find all the corner frequencies (in radians per second) in a magnitude Bode plot of this transfer function. Corner frequencies (radians/s): 3, 5, 20 (and 0)

Corner frequencies are the magnitudes of the locations of the non-zero real poles and zeros and the radian resonant frequencies of any complex poles or zeros.

$$H(j\omega) = \frac{j\omega(j\omega+3)}{10(j\omega)^2 + j250\omega + 1000} = \frac{1}{10} \times j\omega \times (j\omega+3) \times \frac{1}{(j\omega+5)(j\omega+20)}$$

Zeros at $j\omega = 0$ and $j\omega = -3$. Poles at $j\omega = -5$ and $j\omega = -20$. (There is not actually a "corner" at zero but I accepted it anyway.)

- (b) At very low and very high frequencies what is the slope of the magnitude Bode plot in dB/decade? Slope = ± 20 dB/decade at very low frequencies and $\underline{0}$ dB/decade at very high frequencies At very low frequencies the transfer function is approximately $H(j\omega) = j3\omega/1000$. This is a frequency-independent gain times a single differentiator so the slope is ± 20 dB/decade. At very high frequencies the transfer function is approximately $H(j\omega) = \frac{j\omega(j\omega)}{10(j\omega)^2} = \frac{1}{10}$ which is a constant so the slope is 0 dB/decade.
- 2. (a) Find the transfer function, $H(j\omega) = \frac{V_o(j\omega)}{V_i(j\omega)}$, of this active filter with $R_i = 1000 \,\Omega$, $C_i = 1 \mu F$ and $R_f = 5000 \,\Omega$.

Using the gain formula for an inverting amplifier, $H(j\omega) = -\frac{R_f}{R_i + \frac{1}{j\omega C_i}} = -\frac{j\omega R_f C_i}{j\omega R_i C_i + 1} = -\frac{j5\times 10^{-3}\omega}{j10^{-3}\omega + 1}.$

(b) Find all the corner frequencies (in radians per second) in a magnitude Bode plot of this transfer function. Corner frequencies (radians/s): 1000 (and 0)

There is one real pole at $j10^{-3}\omega + 1 = 0 \Rightarrow j\omega = -1000$ and one real zero at $j\omega = 0$. (Again, there is not actually a "corner" at zero but I accepted it anyway.)

(c) At very low and very high frequencies what is the slope of the magnitude Bode plot in dB/decade? Slope = ± 20 dB/decade at very low frequencies and ± 0 dB/decade at very high frequencies

At very low frequencies the transfer function is approximately $H(j\omega) = -j5 \times 10^{-3} \omega$. This is a single differentiator times a frequency-independent gain of -5×10^{-3} so the slope is +20 dB/decade. At very high frequencies the transfer function is approximately $H(j\omega) = -5$ which is a constant so the slope is 0 dB/decade.

Solution of ECE 315 Test 13 F04

1. An LTI system has a transfer function,

$$H(j\omega) = \frac{1200 - 10\omega^2 + j340\omega}{j6\omega - \omega^2} .$$

(a) Find all the corner frequencies (in radians per second) in a magnitude Bode plot of this transfer function. Corner frequencies (radians/s): 6, 4, 30 (and 0)

Corner frequencies are the magnitudes of the locations of the non-zero real poles and zeros and the radian resonant frequencies of any complex poles or zeros.

$$H(j\omega) = \frac{10(j\omega)^2 + j340\omega + 1200}{j\omega(j\omega + 6)} = 10 \times (j\omega + 4)(j\omega + 30) \times \frac{1}{j\omega} \times \frac{1}{j\omega + 6}$$

Zeros at $j\omega = -4$ and $j\omega = -30$. Poles at $j\omega = 0$ and $j\omega = -6$. (There is not actually a "corner" at zero but I accepted it anyway.)

- (b) At very low and very high frequencies what is the slope of the magnitude Bode plot in dB/decade? Slope = $\frac{-20}{20}$ dB/decade at very low frequencies and $\frac{0}{20}$ dB/decade at very high frequencies At very low frequencies the transfer function is approximately H($j\omega$) = $\frac{200}{j\omega}$. This is a frequency-independent gain times a single integrator so the slope is $\frac{-20}{200}$ dB/decade. At very high frequencies the transfer function is approximately H($j\omega$) = 10 which is a constant so the slope is 0 dB/decade.
- 2. (a) Find the transfer function, $H(j\omega) = \frac{V_o(j\omega)}{V_i(j\omega)}$, of this active filter with $R_i = 2000 \,\Omega$, $C_f = 1 \mu F$ and $R_f = 4000 \,\Omega$.

Using the gain formula for an inverting amplifier,
$$\mathbf{H}(j\omega) = -\frac{R_f + \frac{1}{j\omega C_f}}{R_i} = -\frac{j\omega R_f C_f + 1}{j\omega R_i C_f} = -\frac{j4 \times 10^{-3}\omega + 1}{j2 \times 10^{-3}\omega}.$$

(b) Find all the corner frequencies (in radians per second) in a magnitude Bode plot of this transfer function. Corner frequencies (radians/s): <u>250 (and 0)</u>

There is one real zero at $j4 \times 10^{-3}\omega + 1 = 0 \Rightarrow j\omega = -250$ and one real pole at $j\omega = 0$. (Again, there is not actually a "corner" at zero but I accepted it anyway.)

(c) At very low and very high frequencies what is the slope of the magnitude Bode plot in dB/decade? Slope = $\frac{-20}{4}$ dB/decade at very low frequencies and $\frac{0}{4}$ dB/decade at very high frequencies

At very low frequencies the transfer function is approximately $H(j\omega) = -500 / j\omega$. This is a single integrator times a frequency-independent gain of -500 so the slope is -20 dB/decade. At very high frequencies the transfer function is approximately $H(j\omega) = -2$ which is a constant so the slope is 0 dB/decade.