Solution to ECE Test #13 F03

In the active filters below all resistors are 1 ohm and all capacitors are 1 farad. For each filter the transfer function is $H(j\omega) = \frac{V_0(j\omega)}{V_i(j\omega)}$. Identify the transfer-function magnitude Bode diagram for each circuit by entering the correct letter.

 $|H(j\omega)|$ is $\frac{R_f}{\frac{1}{j\omega C_i}}$. At very low frequencies that ratio approaches zero (negative infinity in

dB) and at very high frequencies it approaches infinity (positive infinity in dB).

 $|H(j\omega)| \text{ is } \left| \frac{\frac{1}{j\omega C_f}}{R_i} \right|. \text{ At very low frequencies that ratio approaches infinity (positive infinity)}$

in dB) and at very high frequencies it approaches zero (negative infinity in dB).

At very low frequencies $|H(j\omega)|$ approaches $\frac{R_f}{R_i} = 1$ or 0 dB. At very high frequencies it

approaches $\left| \frac{1}{j\omega C} \atop R_i \right| = 0$, (negative infinity in dB). $H(j\omega) = -\frac{\frac{R_f}{m_f} \frac{1}{j\omega C}}{R_i} = -\frac{R_f}{R_i} \frac{1}{j\omega R_f C + 1} \Rightarrow \text{Lowpass Filter} \xrightarrow{\left[\frac{9}{20} \right]_{10}^{20} \underbrace{10}_{10}}{\left[\frac{9}{20} \right]_{10}^{20} \underbrace{10}_{10}} \underbrace{10^{1}}_{10^{1}} \underbrace{10^{0}}_{10^{1}} \underbrace{10^{1}}_{10^{1}} \underbrace{10^{1}}_{10^{1}}$ 5. $\frac{i_{i}(j)}{\frac{1}{\sqrt{2}}} = \frac{R_{i} - C_{i}}{\frac{1}{\sqrt{2}}}$ At very low frequencies $|H(j\omega)|$ approaches $\left|\frac{1}{j\omega C_{f}}\right|$ which approaches infinity (positive infinity in \mathbb{D})

infinity in dB). At very high frequencies it approaches $\frac{R_f}{R_i} = 1$ or 0 dB.

At very low frequencies $|\mathbf{H}(j\omega)|$ approaches $\frac{R_f + R_i}{R_i} = 2$ or 6 dB. At very high

frequencies it approaches
$$\frac{\left|\frac{1}{j\omega C_{f}} + R_{i}\right|}{R_{i}} = 1 \text{ or } 0 \text{ dB.}$$
$$H(j\omega) = \frac{\frac{R_{f}}{\frac{1}{j\omega C_{f}}}}{\frac{R_{f} + \frac{1}{j\omega C_{f}}}{R_{i}}} = \frac{j\omega R_{i}R_{f}C_{f} + \left(R_{i} + R_{f}\right)}{j\omega R_{i}R_{f}C_{f} + R_{i}}$$

At very low frequencies $|\mathbf{H}(j\omega)|$ approaches $\left|\frac{1}{j\omega C_f} + R_i\right|$ which approaches infinity (positive infinity in dB). At very high frequencies it approaches $\frac{R_f + R_i}{R_i} = 2$ or 6 dB.

8. $\frac{k_{i}}{k_{i}} = 2 \text{ or } 6 \text{ dB.}$ At very high

frequencies it approaches $\left| \frac{R_f + \frac{1}{j\omega C_i}}{\frac{1}{j\omega C_i}} \right|$ which approaches infinity (positive infinity in dB).

$$H(j\omega) = \frac{R_{f} + \frac{1}{\frac{j\omega C_{i}}{M_{i}}}R_{i}}{\frac{1}{j\omega C_{i}} + R_{i}} = \frac{j\omega R_{f}R_{i}C_{i} + R_{i} + R_{f}}{R_{i}}$$