Solution of ECE 316 Test #9 S04

1. Find the magnitude of the transfer function of the systems with these pole-zero plots at the specified frequencies. (In each case assume the transfer function is of the general form, $H(z) = K \frac{(z-z_1)(z-z_2)\cdots(z-z_N)}{(z-p_1)(z-p_2)\cdots(z-p_D)}$, where the *z*'s are the zeros and the *p*'s are the poles, and let K = 1.)

(a)
$$@\Omega = 0, |H(e^{j\Omega})| = |H(1)| = |1 \times \frac{1}{0.2}| = 5$$

(b)
$$@ \Omega = \pi , |H(e^{j\Omega})| = |H(-1)| = \left| 1 \times \frac{-1}{(-1 - (0.4 + j0.7))(-1 - (0.4 - j0.7))} \right| = \frac{1}{1.565 \times 1.565} = 0.4082$$

2. For each of the systems with these pole-zero plots find the DT radian frequencies, Ω_{max} and Ω_{min} , in the range, $-\pi \le \Omega \le \pi$ for which the transfer function magnitude is a maximum and a minimum. If there is more than one value of Ω_{max} or Ω_{min} , find all such values.

(a) The minimum magnitude obviously occurs at z = 1 or $\Omega = 0$ because the transfer function has a zero there and nowhere else. The maximum magnitude occurs when z is nearest one of the poles. That occurs where Ω is the angle formed by a vector from the origin to either one of the poles. Those Ω 's are $\tan^{-1}\left(\frac{\pm 0.8}{0.5}\right) = \pm 1.012$.

(b) The minimum magnitude occurs at the two zeros at $\Omega = \pm \frac{\pi}{2}$. The maximum magnitude occurs at the closest approach to the pole at z = -0.8 which is at $\Omega = \pm \pi$.

$$\Omega_{\max} = \pm 1.012$$
(a) $\Omega_{\min} = 0$
(b) $\Omega_{\min} = \pm \frac{\pi}{2}$
(c) $\Omega_{\min} = \frac{\pi}{2}$
(c) Ω_{\max