Solution of ECE 316 Test #9 S04

1. Find the magnitude of the transfer function of the systems with these pole-zero plots at the specified frequencies. (In each case assume the transfer function is of the general form, $H(z) = K \frac{(z - z_1)(z - z_2) \cdots (z - z_n)}{(z - p_1)(z - p_2) \cdots (z - p_n)}$ *N D* $(z) = K \frac{(z-z_1)(z-z_2)\cdots(z-z_N)}{(z-p_1)(z-p_2)\cdots(z-p_D)}$ $(1/\sqrt{2})$ $1/\sqrt{2}$ P_2 $\frac{m(z-z_N)}{m(z-p_n)}$, where the *z*'s are the zeros and the *p*'s are the poles, and let $K = 1$.)

(a)
$$
\textcircled{a} \Omega = 0
$$
, $|H(e^{j\Omega})| = |H(1)| = \left|1 \times \frac{1}{0.2}\right| = 5$

(b)
$$
\textcircled{a} \Omega = \pi, \left| H(e^{j\Omega}) \right| = \left| H(-1) \right| = \left| 1 \times \frac{-1}{\left(-1 - (0.4 + j0.7) \right) \left(-1 - (0.4 - j0.7) \right)} \right| = \frac{1}{1.565 \times 1.565} = 0.4082
$$
\n(a) (b)

2. For each of the systems with these pole-zero plots find the DT radian frequencies, Ω_{max} and Ω_{min} , in the range, $-\pi \leq \Omega \leq \pi$ for which the transfer function magnitude is a maximum and a minimum. If there is more than one value of Ω_{max} or Ω_{min} , find all such values.

(a) The minimum magnitude obviously occurs at $z = 1$ or $\Omega = 0$ because the transfer function has a zero there and nowhere else. The maximum magnitude occurs when *z* is nearest one of the poles. That occurs where Ω is the angle formed by a vector from the origin to either one of the poles. Those Ω 's are $\tan^{-1}\left(\frac{\pm 0.8}{0.5}\right) = \pm 1.$ 0.5 1 012.

(b) The minimum magnitude occurs at the two zeros at $\Omega = \pm \frac{\pi}{2}$ 2 . The maximum magnitude occurs at the closest approach to the pole at $z = -0.8$ which is at $\Omega = \pm \pi$.

(a)
$$
\Omega_{max} = \pm 1.012
$$

\n(b) $\Omega_{min} = \pm \pi$
\n $\Omega_{min} = \pm \pi$