Solution to ECE Test #3 S08 #1

In the discrete-time filter below $a = 0.3$, $b = -2$, $c = 1.5$, $d = 0.4$

(a) The difference equation for the filter below can be expressed in the form $y[n] + Ay[n-1] = Bx[n] + Cx[n-1]$. Find the numerical values of *A*, *B* and *C*. *A* = ________ , *B* = ________ , *C* = ________ $\mathbf{v}[n] = b(-a\mathbf{x}[n] + c\mathbf{x}[n-1] - d\mathbf{v}[n-1])$ $y[n] = -2(-0.3x[n] + 1.5x[n-1] - 0.4y[n-1])$ $y[n] - 0.8y[n-1] = 0.6x[n] - 3x[n-1]$ $A = -0.8$, $B = 0.6$, $C = -3$

(b) The frequency response $H(e^{j\Omega})$ can be expressed in the form $H(e^{j\Omega}) = K \frac{e^{j\Omega} + \alpha}{\omega}$ $\frac{e^{j\Omega}+i\Omega}{e^{j\Omega}+\beta}$. Find the numerical values of *K*, α and β .

$$
K = \frac{\gamma(e^{j\Omega}) - 0.8 \gamma(e^{j\Omega}) e^{-j\Omega}}{1 - 0.8 \gamma(e^{j\Omega})} = \frac{0.6 \times (e^{j\Omega}) - 3 \times (e^{j\Omega}) e^{-j\Omega}}{1 - 0.8 e^{-j\Omega}} = \frac{0.6 e^{j\Omega} - 3}{e^{j\Omega} - 0.8} = 0.6 \frac{e^{j\Omega} - 5}{e^{j\Omega} - 0.8} = 0.6 \frac{e^{j\Omega} - 5}{e^{j\Omega} - 0.8} = 0.8
$$

$$
K = 0.6 \text{ , } \alpha = -5 \text{ , } \beta = -0.8
$$

(c) If $x[n] = 4u[n]$ is applied to the filter, what numerical value does $y[n]$ approach as *n* - ? () y[] *n ⁿ*- = ________ (You can check this answer by realizing that as $n \to \infty$, y[n] approaches a constant. Therefore, in that limit, $y[n] = y[n-1]$ and we already know that $x[n] = x[n-1]$. Then you can solve the difference equation for $y[n]$.) $H(e^{j0}) = H(1) = 0.6 \frac{1-5}{1-0.8} = 0.6 \times (-4) / (0.2) = -12 \Rightarrow y[n] \rightarrow 4 \times (-12) = -48$ $x[n]$ \longrightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow $y[n]$ $D \rightarrow \rightarrow \bigoplus$ $\rightarrow \rightarrow \Box$ $+$ *a c d b*

Solution to ECE Test #3 S08 #1

In the discrete-time filter below $a = 0.5$, $b = -3$, $c = -0.2$, $d = 0.3$

(a) The difference equation for the filter below can be expressed in the form
\n
$$
y[n] + Ay[n-1] = Bx[n] + Cx[n-1].
$$
\nFind the numerical values of *A*, *B* and *C*.
\n
$$
A = \underline{\hspace{1cm}} , B = \underline{\hspace{1cm}} , C = \underline{\hspace{1cm}} ,
$$
\n
$$
y[n] = b(-ax[n] + cx[n-1] - dy[n-1])
$$
\n
$$
y[n] = -3(-0.5x[n] - 0.2x[n-1] - 0.3y[n-1])
$$
\n
$$
y[n] - 0.9y[n-1] = 1.5x[n] + 0.6x[n-1]
$$
\n
$$
A = -0.9, B = 1.5, C = 0.6
$$

(b) The frequency response $H(e^{j\Omega})$ can be expressed in the form $H(e^{j\Omega}) = K \frac{e^{j\Omega} + \alpha}{\omega}$ $\frac{e^{j\Omega}+i\alpha}{e^{j\Omega}+\beta}$. Find the numerical values of *K*, α and β .

$$
K = \frac{\gamma(e^{j\Omega}) - 0.9 \gamma(e^{j\Omega})e^{-j\Omega}}{1 - 0.9 \gamma(e^{j\Omega})} = 1.5 \times (e^{j\Omega}) + 0.6 \times (e^{j\Omega})e^{-j\Omega}
$$

$$
H(e^{j\Omega}) = \frac{\gamma(e^{j\Omega})}{X(e^{j\Omega})} = \frac{1.5 + 0.6e^{-j\Omega}}{1 - 0.9e^{-j\Omega}} = \frac{1.5e^{j\Omega} + 0.6}{e^{j\Omega} - 0.9} = 1.5 \frac{e^{j\Omega} + 0.4}{e^{j\Omega} - 0.9}
$$

$$
K = 1.5 \quad \alpha = 0.4 \quad \beta = -0.9
$$

(c) If $x[n] = 4u[n]$ is applied to the filter, what numerical value does $y[n]$ approach as *n* - ? () y[] *n ⁿ*- = ________

(You can check this answer by realizing that as $n \to \infty$, y[n] approaches a constant. Therefore, in that limit, $y[n] = y[n-1]$ and we already know that $x[n] = x[n-1]$. Then you can solve the difference equation for $y[n]$.) $H(e^{j0}) = H(1) = 1.5\frac{1+0.4}{1-0.9} = 1.5 \times 1.4 / 0.1 = 21 \Rightarrow y[n] \rightarrow 4 \times 21 = 84$ *b*

