Solution to ECE Test #4 Su05

1. Find the numerical values of the constants. (a) $\left(\delta\left[n\right]-2\delta\left[n-2\right]\right) * (0.7)^n \text{ u}\left[n\right] \leftarrow \mathbb{Z} \rightarrow A \frac{z+Bz}{z}$ $z + C$ $(\delta[n]-2\delta[n-2])*(0.7)^n$ u $[n] \leftarrow \rightarrow A \xrightarrow{z+1}$ + − $2\delta |n-2|$ * (0.7) 1 .7)ⁿ u[n] $\leftarrow \frac{z}{2}$ $A = 1$, $B = -2$, $C = -0.7$ $\delta\left[n\right]-2\delta\left[n-2\right]\times\left(0.7\right)^{n}$ u $\left[n\right]\leftarrow\frac{z}{2}\left(1-2z^{-2}\right)\frac{z}{2}$ *z* $(\delta[n] - 2\delta[n-2]) * (0.7)^n \text{ u}[n] \xleftarrow{7} (1 - 2z^{-2}) \frac{1}{z-1}$.7)ⁿ u[n] $\left(-\frac{z}{z-0.7}\right)$ = $\frac{z}{z-0.7}$ = $\frac{z}{z-0.7}$ − $z - 2z^{-}$ *z* 2 0.7 1 . (b) $Aa^n \left[\cos(bn) + B \sin(bn) \right] \ln \left[n \right] \xrightarrow{z} \frac{z}{2}$ $\int_{a}^{n} \left[\cos(bn) + B \sin(bn) \right] \mathrm{u}[n] \leftarrow \frac{z}{z^2 + z + 0}.$ 2 $z^2 + z + 0.8$ $A = 1$, $B = -0.6742$ $a = 0.8944$, $b = 2.164$ $\alpha = \sqrt{0.8} = 0.8944$ and $-2\alpha \cos(\Omega_0) = 1 \Rightarrow \cos(\Omega_0) = -\frac{1}{2 \times 0.8944} = -0.559 \Rightarrow \Omega_0 =$ α cos (Ω_0) = 1 \Rightarrow cos (Ω_0) = $-\frac{1}{2 \times 0.8944}$ = -0.559 \Rightarrow Ω_0 = 2.164 Aa^n $\left[\cos(bn) + B\sin(bn)\right]$ u $\left[n\right] \leftarrow \frac{z}{z^2 + z^2 - 0.8944 \cos(2.164))}$ 0.8944 cos(2.164 $z^2 + z + 0.8$ $z^2 + z + 0.8$. . $.8944 \cos(2.$. (2.164) $+ z +$ $+\frac{0.8944 \cos(2.164)}{2}$ $z^2 + z + 0.8$ $z^2 + z + z$ $Aa^n \left[\cos(bn) + B \sin(bn) \right] \ln \left(n \right) \xrightarrow{z} \frac{z}{2}$ $\int_{a}^{n} \left[\cos(bn) + B \sin(bn) \right] u\left[n \right] \leftarrow \frac{z}{z^2 + z + 0}.$ Z 2 2 0.5 0. . $.8944 \sin(2.$ $.8944 \sin(2.$ 8 0.5 $0.8944 \sin(2.164)$ 0.8944 sin(2.164 $-\frac{0.5}{0.8944 \sin(2.164)} \frac{0.8944 \sin(2.164)}{z^2 + z + 0.8}$ z^2 + z + 0.8 $Aa^n \left[\cos(bn) + B \sin(bn) \right] \ln \left(n \right) \xrightarrow{z} \frac{z}{2}$ $\int_{a}^{n} \left[\cos(bn) + B \sin(bn) \right] u\left[n \right] \leftarrow \frac{z}{z^2 + z + 0}.$ Z 2 2 $\frac{0.5}{+0.8} - 0.6742 \frac{0.7416}{z^2 + z + 0.8}$ $(0.8944)^n$ $\left[\cos(2.164n) + 0.6472\sin(2.164n)\right]$ u $\left[n\right] \leftarrow \rightarrow \frac{z}{z^2}$ $z^2 + z + 0.8$ $z^2 + z$ $[n] \leftarrow \frac{z}{z^2 + z + 0.5} - 0.6742 \frac{0.741}{z^2 + z + 0.8}$ 2 2 $\sqrt{0.8}$ $^{0.07}$ 12 $_{2}$ 0.5 0.8 $0.6742 - \frac{0.7416}{2}$ 0.8 $\frac{.5}{0.8} - 0.6742 \frac{0.7416}{z^2 + z + 0.}$

(c)
$$
4u[n+1] \leftarrow \frac{z}{z-B}
$$

$$
A=\underline{4} \quad , \qquad B=\underline{1}
$$

Using
$$
g[n+n_0] \xleftarrow{Z} z^{n_0} \left(G(z) - \sum_{m=0}^{n_0-1} g[m] z^{-m} \right)
$$
, $n_0 > 0$

$$
4 u[n+1] \xleftarrow{Z} 4 z \left(\frac{z}{z-1} - 1 \right) = 4 z \frac{z-z+1}{z-1} = \frac{4 z}{z - 1}
$$

2. If $X(z) = \frac{z^3 + 2z^2 - 3z + 7}{(z-1)(z^2 - 1.8z + 0.1)}$ $(z-1)(z^2-1.8z)$ $(z) = \frac{z^3 + 2z^2 - 3z + 1}{(z)(z - 1)(z - 1)}$ $(z - 1)(z^2 - 1.8z + 0.9)$ $3 \sqrt{2}$ 2 $2z^2 - 3z + 7$ $1\left(z^2-1.8z+0.9\right)$ what is the numerical final value of $x[n]$ $(\lim_{n\to\infty}x[n])$?

1

z

All the poles of $(z - 1)X(z)$ are in the open interior of the unit circle. Therefore the final-value theorem applies.

$$
\lim_{n \to \infty} x[n] = \lim_{z \to 1} (z - 1) X(z) = \lim_{z \to 1} \frac{z^3 + 2z^2 - 3z + 7}{z^2 - 1.8z + 0.9} = \frac{1 + 2 - 3 + 7}{1 - 1.8 + 0.9} = 70
$$

3. If $(1.1)^n \cos(2\pi n / 16) \leftarrow \frac{z}{n} H_1(z)$, and $H_2(z) = H_1(az)$ and $H_1(z)$ and $H_2(z)$ are transfer functions of DT systems #1 and #2 respectively, what range of values of *a* will make system #2 stable?

Poles of $H_1(z)$ are outside the unit circle and the impulse response grows because of the factor $(1.1)^n$. If $z \rightarrow az$, then by the change of scale property, the time-domain function will be multiplied by $(1/a)^n$. If the magnitude of *a* is greater than 1.1, then the poles of $H_2(z)$ will be inside the unit circle and the factor $(1.1)^n$ changes to $(1.1/a)^n$ which, for $|a| > 1.1$ makes the impulse response decay instead of growing.

By the way, if $H_2(z)$ is to be a physically realizable system then *a* must also be a real number. That is, $a > 1.1$ or $a < -1.1$.

4. Sketch a root locus for each pole-zero map of a loop transfer function below. Then, for each one, indicate whether the system is unstable at a finite, positive value of the gain constant *K*.

Unstable at a finite, positive *K*? Unstable at a finite, positive *K*?

5. In the space provided below sketch the area of the *z* plane corresponding to the area of the *s* plane defined by $-\frac{1}{\pi} < \sigma < -\frac{1}{2\pi}$ T_s 2 T_s $\sigma < -\frac{1}{2\pi}$ and $\frac{\pi}{2\pi} < \omega < \frac{\pi}{\pi}$ $2T_s$ T_s $<\omega<\frac{\kappa}{\pi}$.

The area is defined in polar coordinates as a region for which the distance from the origin is between e^{-1} and $e^{-1/2}$ or between 0.368 and 0.6065 and for which the angle is between $\pi/2$ and π .

6. A DT system has a transfer function of the form

$$
H(z) = A \frac{(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)}.
$$

If $A = 2$, $z_1 = 0$, $z_2 = 0.1$, $p_1 = -0.8$ and $p_2 = -0.5$.

(a) At what numerical value of Ω will the transfer function magnitude be largest?

The zeros are at 0 and 0.1. So when the vectors to the operating frequency on the unit circle rotate one has a constant length and the other has a length that changes very little. The poles are at -0.8 and -0.5. So when the operating frequency is nearest these values the pole vectors are the shortest and the transfer function magnitude is the largest. This occurs when $\Omega = \pi + 2n\pi$ where *n* is any integer.

(b) At what numerical value of Ω will the transfer function magnitude be smallest?

Conversely the pole vectors will be at maximum length when $\Omega = 0 + 2n\pi$ where n is any integer and the transfer function magnitude will be minimum there.