Solution to ECE Test #4 Su06

1. If $x[n] \longleftrightarrow X(z) = \frac{z}{z^2 + 0}$. $[n] \longleftrightarrow X(z) = \frac{z}{z^2 + 1}$ $\frac{2}{2} + 0.81$ fill in the table below with numbers.

$$
\alpha^{n} \sin(\Omega_{0} n) u[n] \xrightarrow{z} \frac{\alpha z \sin(\Omega_{0})}{z^{2} - 2\alpha z \cos(\Omega_{0}) + \alpha^{2}}
$$

\n
$$
\alpha = \sqrt{0.81} = 0.9 , 2\alpha \cos(\Omega_{0}) = 0 \Rightarrow \Omega_{0} = \pi/2
$$

\n
$$
X(z) = \frac{1}{\alpha \sin(\Omega_{0})} \frac{z \alpha \sin(\Omega_{0})}{z^{2} + 0.81} \Rightarrow x[n] = \frac{1}{\alpha \sin(\Omega_{0})} \alpha^{n} \sin(\Omega_{0} n) u[n]
$$

\n
$$
x[n] = (0.9)^{n-1} \sin(\pi n/2) u[n]
$$

\n
$$
n \qquad x[n]
$$

\n
$$
1 \qquad 1
$$

\n
$$
3 \qquad -0.81
$$

\n
$$
11 \qquad -0.3487
$$

\n
$$
21 \qquad 0.1216
$$

2. On the right-hand graph coordinates, sketch the region in the *z* plane corresponding to the given shaded region in the *s* plane, using the mapping relationship $z = e^{sT_s}$ with $T_s = 1$.

The range of magnitudes of *z* will be $e^{-0.25} = 0.7788$ to $e^{+0.25} = 1.284$. The range of angles will be from -0.4 radians to $+0.4$ radians $(-22.9^\circ$ to $+22.9^\circ)$.

3. A discrete-time system has a transfer function $H(z) = \frac{z}{z-0}$. $(z) = \frac{z}{z - 0.6}$. It is excited by a suddenly-applied sinusoid of the form $x[n] = 4 \cos(2\pi n/16) u[n]$. After a long time $(n \rightarrow \infty)$ the response of the system approaches a sinusoid of the form $y[n] = A \cos \left(\frac{2\pi n}{B} + C \right)$ Using the result derived in the text y N D $n = \sum_{r=1}^{n} z \frac{1}{r} \left[\frac{1}{r} \right] + |H(p_1)| \cos(\Omega_0 n + H)$ *z* $\left[n \right] = Z^{-1} \left(z \frac{N_1(z)}{D(z)} \right) + \left| H(p_1) \right| \cos \left(\Omega_0 n + H(p_1) \right)$ ſ l I \overline{a} $\overline{1}$ $\mathbb{E} \left[\left\| z \frac{1}{\mathbf{D}(z)} \right\| + \left| \mathbf{H}(p_1) \right| \cos \left(\Omega_0 n + \mathbf{H}(p_1) \right) \mathbf{u}(n) \right]$ where $p_1 = e^{i \Omega_0}$,

what are the numerical values of *A*, *B* and *C*? $A = 1.9946$, $B = 16$, $C = -0.4757$

$$
\Omega_{0} = \pi / 8 \Rightarrow p_{1} = e^{j\pi / 8}
$$

$$
H(p_1) = H(e^{j\pi/8}) = \frac{e^{j\pi/8}}{e^{j\pi/8} - 0.6} = \frac{0.9239 + j0.3827}{0.9239 + j0.3827 - 0.6}
$$

= $\frac{0.9239 + j0.3827}{0.3239 + j0.3827} = 1.7731 - j0.9135 = 1.9946 - 0.4757 = 1.9946e^{-j0.4757}$

$$
y[n] = 1.9946 \cos\left(\frac{2\pi n}{16} - 0.4757\right)u[n]
$$

- 4. A discrete-time bandpass filter has a transfer function $H(z) = \frac{(z-1)(z+1)}{z^2 1.4z + 0.}$ $(z-1)(z)$ $z^2 - 1.4z$ $(z) = \frac{(z-1)(z+1)}{z-1+1}$ $-1.4z +$ $1)(z+1)$ $\frac{(x-1)(x+1)}{x^2-1.4z+0.98}$.
	- (a) Letting $z = e^{j\Omega}$ where Ω is real radian frequency, what two numerical values of Ω in the range $-\pi \leq \Omega < \pi$ make the magnitude of the transfer function a maximum?

 $\Omega = -\pi / 4$ or -0.785 and $\pi / 4$ or 0.785

This transfer function has two zeros at $z = \pm 1$ and two poles at $z = 0.9899 e^{\pm j0.7854}$. These two poles are very close to the unit circle and the maximum response magnitude occurs when ζ is closest to the poles. That occurs at an angle of $\pm \pi/4$ radians and those are the same as the values of Ω for a maximum magnitude.

(b) Letting $z = e^{i\Omega}$ where Ω is real radian frequency, what two numerical values of Ω in the range $-\pi \leq \Omega < \pi$ make the magnitude of the transfer function a minimum?

 $\Omega = -\pi$ and <u>0</u>

The minimum magnitude occurs at the zeros which are at $z = \pm 1$.

 $z = \pm 1 \Rightarrow \Omega = -\pi$ and 0