
Solution to EE 504 Test #2 F03
1. Three random variables, X, Y and Z have the following characteristics:
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Find the numerical value of the correlation coefficient, ρXW , between X  and
W X Y Z= − +2 .
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The variance of W could also be found using
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The covariance of X with W is
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2. Two independent random variables, X and Y, have pdf’s given by

p . .X x x x( ) = −( ) + +( )0 3 2 0 7 1δ δ

and pY y( ) is uniform over the range, 2 7< <y .  

(a) Sketch the pdf of Z X Y= − .
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(b) What is the numerical probability that Z  < 4?
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Referring to the pdf graph, this is the area under the pdf from -4 to 0, which is 0.2(1) +
0.06(3) = 0.38.  Check.

3. An experiment is performed 200 times.  The sample mean, x , of the experimental
outcomes is 25 and the sample standard deviation, SX , is 4. A sample size of 200 is large
enough to reasonably use the sample standard deviation as the population standard
deviation, σ X , and to reasonably assume that the pdf of the sample mean, X , is Gaussian.
A confidence interval on the sample mean is to be reported in the form, 25 ± k , for a
confidence level of 80%.  Find the numerical value of k.
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From the normal distribution tables, for a confidence level of 80%, the confidence interval
should be approximately 25 1 3 25 0 3676± = ±. .σ

X
.  Therefore k is 0.3676.

4. What characteristic of its probability density function indicates that a random
variable is continuous?

The pdf has     no     impulses in it.

OR

What characteristic of its probability density function indicates that a random variable is
discrete?

The pdf has     only     impulses in it.

5. A deterministic random process has sample functions of the form,

X cost A t( ) = +( )2π θ ,

where A and θ are random over the ensemble but constant for any single sample function.
Let θ be uniformly distributed over the range, − < <π θ π  and let A be Gaussian
distributed with an expected value of 1 and a variance of 4.  Let A and θ be independent,
implying that A and cos 2π θt +( )  are also independent.  Find the mean-squared value of the

random process, E X t2( )( ) .
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Since A and cos 2π θt +( )  (and, by implication, cos 4 2π θt +( ) ) are independent,
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(This result, E cos 4 2 0π θt +( )( ) = , should be obvious but the preceding three lines prove it
in case it is not.)  Then
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