
Solution to ECE 504 Test #2 F02

1. A random variable, X, has a pdf that is uniform between x1 and x2 .  What is the

numerical probability that X x< 0, given that X x> 3?
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2. A random variable, X, has an expected value of E X( )  and a variance, σ X
2 .  If a

number is computed by averaging N randomly-chosen values of X, what is the probability
that the number will be between E X x( ) − 0 and E X x( ) + 0  ?
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If N  is large, the central limit theorem applies and the pdf of X  is Guassian with
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3. The pdf of X is of the form, p
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 and the pdf of Y is of the

form, pY y a y y b y y( ) = −( ) + −( )δ δ1 2 , a b+ =1.  The random variable, Z, is Z X Y= − .

So the pdf of Z  is the convolution of the pdf’s of X  and -Y .  The pdf of -Y is
a y y b y y a y y b y yδ δ δ δ− −( ) + − −( ) = +( ) + +( )1 2 1 2 .  Therefore the pdf of Z is
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The probability is the area under this function for z z> 0 .  This is the sum of two areas,

one for each of the two terms above.  The area under the first term is
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each of the two terms above.  The area under the second term is

b

x x
z z

2 1
4 3−

−( )

where z4  is the greater of E X y
x x( ) − +

−
2

2 1

2
 and z0 and z3 is the greater of

E X y
x x( ) − −

−
2

2 1

2
 and z0.  (This last result is best seen by drawing a sketch of the pdf

of Z.)



4. Two random variables, X and Y, have a joint pdf, which is one-half in the regions,

0 1 0 1< < < <x y, and − < < − < <1 0 1 0x y,

and zero elsewhere.  That is, the joint pdf is
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What is the numerical value of the correlation coefficient, ρXY  ?
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Similarly,
E Y( ) = 0
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5. A random variable, X, has an expected value, E X( ) , and a standard deviation,

σ X .  Another random variable, Y, has an expected value, E Y( ) , and a standard deviation,

σY .  X and Y are independent.  Two other random variables are formed by Z X Y1 = +  and

Z X Y2 = − .  Find the numerical value of the covariance, σ12 , between Z1 and Z2.
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