Web Appendix G - Derivations of the Properties of the Discrete-Time Fourier Series

G.1The Trigonometric Discrete-Time Fourier Series

Assuming a DTFS harmonic function has been found, we can say that

where

$$
x[n] = x_F[n], \quad n_0 < n < n_0 + N_F
$$
\n
$$
x_F[n] = \sum_{k = \langle N_F \rangle} x[k] e^{j2\pi kn/N_F} . \tag{G.1}
$$

It is useful to explore the characteristics of the complex conjugate of $x_F[n]$. If we conjugate both sides of (G.1) we get

$$
\mathbf{x}_{F}^{*}\left[n\right] = \sum_{k=\langle N_{F}\rangle} \mathbf{X}^{*}\left[k\right] e^{-j2\pi kn/N_{F}}.
$$

Since any range of *k* exactly N_F in length will work we can replace *k* with $-k$ and still have an equality

$$
x_F^*\left[n\right] = \sum_{k=\langle N_F\rangle} X^*\left[-k\right] e^{j2\pi kn/N_F}.
$$

In words, this says that to find the DTFS harmonic function $X\lfloor k \rfloor$ for the complex conjugate of a signal, conjugate it and change the sign of *k*. The transformation is $X[k] \to X^*[-k]$ and then for any $X[n]$, $X^*[n] \leftarrow \longrightarrow X^*[-k]$. In the very important special case in which $x[n]$ is a real-valued function, $x[n] = x^*[n]$ and therefore $\mathbf{x}_F\left[n\right] = \mathbf{x}_F^*\left[n\right]$. That means that the two representations,

$$
\mathbf{x}_{F}\left[n\right] = \sum_{k=\langle N_{F}\rangle} \mathbf{X}\left[k\right] e^{j2\pi kn/N_{F}} \text{ and } \mathbf{x}_{F}^{*}\left[n\right] = \sum_{k=\langle N_{F}\rangle} \mathbf{X}^{*}\left[-k\right] e^{j2\pi kn/N_{F}}
$$

must be equal and therefore that $X[k] = X^*[-k]$, implying that, for real-valued signals and for any *k*, $X\lfloor k \rfloor$ and $X\lfloor -k \rfloor$ are complex conjugates.

Any set of consecutive harmonics exactly N_F in length is sufficient to represent a signal over the time range $n_0 \le n < n_0 + N_F$. The time range N_F is either an even integer or an odd integer. For N_F even, consider the harmonics $-N_F / 2 \le k \le N_F / 2$. All the harmonics except $k = 0$ and $k = -N_F/2$ occur in complex conjugate pairs $\pm 1, \pm 2, \dots \pm (N_F / 2 - 1)$. The $k = 0$ harmonic is

$$
X\bigg[0\bigg] = \frac{1}{N_F} \sum_{n=n_0}^{n_0+N_F-1} x\bigg[n\bigg]
$$

and is therefore guaranteed to be a real number (if $x \lfloor n \rfloor$ is real). The $k = -N_F / 2$ harmonic is

$$
X[-N_F / 2] = \frac{1}{N_F} \sum_{n=n_0}^{n_0 + N_F - 1} x[n] e^{j\pi n} = \frac{1}{N_F} \sum_{n=n_0}^{n_0 + N_F - 1} x[n] \cos(\pi n)
$$

$$
= \frac{1}{N_F} \sum_{n=n_0}^{n_0 + N_F - 1} x[n] (-1)^n
$$

which is also guaranteed real. Therefore, we can write the DTFS representation of the signal, $X_F[n] = \sum X[k]e^{j2\pi kn/N_F}$ $k = -N_F/2$ $N_F^2/2 - 1$ $\sum X[k]e^{j2\pi kn/N_F}$, as

$$
\mathbf{x}_{F}\left[n\right] = \mathbf{X}\left[0\right] + \underbrace{\mathbf{X}\left[-N_{F}/2\right]}_{=\mathbf{x}\left[N_{F}/2\right]} \underbrace{\cos\left(\pi n\right)}_{=\left(-1\right)^{n}} + \sum_{k=1}^{N_{F}/2-1} \left[\mathbf{X}\left[k\right] e^{j2\pi k n/N_{F}} + \mathbf{X}^{*}\left[k\right] e^{-j2\pi k n/N_{F}}\right]
$$

or

$$
x_F[n] = X[0] + (-1)^n X[N_F / 2]
$$

+
$$
\sum_{k=1}^{N_F/2-1} \left[\text{Re}(X[k]) e^{j2\pi kn/N_F} + \text{Re}(X^*[k]) e^{-j2\pi kn/N_F} + \sum_{k=1}^{N_F/2-1} \left[\text{Re}(X[k]) e^{j2\pi kn/N_F} - j \text{Im}(X^*[k]) e^{-j2\pi kn/N_F} \right] \right]
$$

$$
x_F[n] = X[0] + (-1)^n X[N_F / 2] + \sum_{k=1}^{N_F/2-1} \left[2 \text{Re}(X[k]) \cos(2\pi kn/N_F) -2 \text{Im}(X[k]) \sin(2\pi kn/N_F) \right]
$$

$$
\mathbf{x}_{F}\left[n\right] = \mathbf{X}\left[0\right] + \left(-1\right)^{n} \mathbf{X}\left[N_{F} / 2\right] + \sum_{k=1}^{N_{F}/2-1} \left[\left(\mathbf{X}\left[k\right] + \mathbf{X}^{*}\left[k\right]\right)\cos\left(2\pi k n / N_{F}\right)\right]
$$
\n
$$
\mathbf{x}_{F}\left[n\right] = \mathbf{X}\left[0\right] + \left(-1\right)^{n} \mathbf{X}\left[N_{F} / 2\right]
$$
\n
$$
+ \sum_{k=1}^{N_{F}/2-1} \left[\mathbf{X}_{c}\left[k\right]\cos\left(2\pi k n / N_{F}\right) + \mathbf{X}_{s}\left[k\right]\sin\left(2\pi k n / N_{F}\right)\right]
$$
\n(G.2)

where $X_c[k] = X[k] + X^*[k]$ and $X_s[k] = j(X[k] - X^*[k])$, $0 < k < N_F / 2$. Therefore, using $X[k] = \frac{1}{N_F} \sum_{n=n_0}^{n_0+N_F-1} x[n] e^{-j2\pi kn/N_F}$ $n = n_0$ $\sum_{n=n_0}^{n_0+N_F-1} x[n] e^{-j2\pi k n/N_F}$,

$$
X_c[k] = \frac{2}{N_F} \sum_{n=n_0}^{n_0+N_F-1} x[n] \cos(2\pi kn / N_F) \text{ and } X_s[k] = \frac{2}{N_F} \sum_{n=n_0}^{n_0+N_F-1} x[n] \sin(2\pi kn / N_F)
$$

For N_F odd the development is similar and the result is

$$
\mathbf{x}_{F}\left[n\right] = \mathbf{X}\left[0\right] + \sum_{k=1}^{\left(N_{F}-1\right)/2} \left[\mathbf{X}_{c}\left[k\right]\cos\left(2\pi k n / N_{F}\right) + \mathbf{X}_{s}\left[k\right]\sin\left(2\pi k n / N_{F}\right)\right].
$$
 (G.3)

Equations (G.2) and (G.3) are each a representation of the real-valued signal $x[n]$ in terms of a linear combination of a real constant and real-valued cosines and sines. These are known as the trigonometric forms of the CTFS harmonic function for real-valued signals. The relationships between the complex and trigonometric harmonic functions are

$$
X_c[v] = X[0], X_s[v] = 0
$$

\n
$$
X_c[k] = \begin{cases} X[k] + X^*[k], 0 < k < N_F / 2\\ X[k], k = N_F / 2 \end{cases}
$$

\n
$$
X_s[k] = \begin{cases} j(X[k] - X^*[k]), 0 < k < N_F / 2\\ 0, k = N_F / 2 \end{cases}
$$
 (G.4)

and

$$
X[0] = X_c[0]
$$

\n
$$
X[k] = \begin{cases} \frac{X_c[k] - jX_s[k]}{2}, & 0 < k < N_F / 2\\ X_c[k] & , k = N_F / 2 \end{cases}
$$
 (G.5)
\n
$$
X[-k] = X^*[k], \quad 0 < k \le N_F / 2
$$

The complex and trigonometric forms of the DTFS are closely related because of Euler's identity $e^{jx} = \cos(x) + j\sin(x)$ which indicates that when we find a complex sinusoid in a DTFS representation of a signal we are, by implication, simultaneously finding a cosine and a sine.

G.2Properties

Linearity

Let
$$
z[n] = \alpha x[n] + \beta y[n]
$$
. Then
\n
$$
z[n] = \alpha \sum_{k = \langle N_0 \rangle} X[k] e^{j2\pi k F_0 n} + \beta \sum_{k = \langle N_0 \rangle} Y[k] e^{j2\pi k F_0 n} = \sum_{k = \langle N_0 \rangle} \left(\alpha X[k] + \beta Y[k] \right) e^{j2\pi k F_0 n}
$$

But $z[n]$ also has a DTFS representation,

$$
z[n] = \sum_{k=\langle N_0 \rangle} Z[k] e^{j2\pi k F_0 n} .
$$

Therefore, we can conclude that

$$
\mathbf{Z}\big[\,k\,\big] = \alpha\,\mathbf{X}\big[\,k\,\big] + \beta\,\mathbf{Y}\big[\,k\,\big]
$$

and

$$
\alpha \mathbf{x} \left[n \right] + \beta \mathbf{y} \left[n \right] \longleftrightarrow \alpha \mathbf{X} \left[k \right] + \beta \mathbf{Y} \left[k \right].
$$

Time Shifting

Let
$$
z[n] = x[n - n_0]
$$
. Then
\n
$$
Z[k] = \frac{1}{N_0} \sum_{n = \langle N_0 \rangle} z[n] e^{-j2\pi k F_0 n} = \frac{1}{N_0} \sum_{n = \langle N_0 \rangle} x[n - n_0] e^{-j2\pi k F_0 n}
$$

Now let $q = n - n_0$ in the x summation. Then, since *n* covers a range of N_0 , *q* does also and

$$
Z[k] = \frac{1}{N_0} \sum_{n = \langle N_0 \rangle} z[n] e^{-j2\pi k F_0 n} = \frac{1}{N_0} \sum_{q = \langle N_0 \rangle} x[q] e^{-j2\pi k F_0 (q + n_0)}
$$

$$
Z[k] = \frac{1}{N_0} \sum_{n = \langle N_0 \rangle} z[n] e^{-j2\pi k F_0 n} = e^{-j2\pi (kF_0) n_0} \underbrace{\frac{1}{N_0} \sum_{q = \langle N_0 \rangle} x[q] e^{-j2\pi k F_0 q}}_{-\tilde{X}[k]}
$$

$$
Z[k] = e^{-j2\pi k F_0 n_0} X[k]
$$

and

$$
\mathbf{X}\left[n - n_0\right] \leftarrow^{\text{FS}} e^{-j2\pi k F_0 n_0} \mathbf{X}\left[k\right]
$$

Frequency Shifting

Let $z[n] = e^{j2\pi k_0 F_0 n} x[n]$, k_0 an integer. Then $Z\left[k\right] = \frac{1}{N_0} \sum_{n=\left(N_0\right)} z\left[n\right] e^{-j2\pi kF_0 n}$ $n = \langle N_0$ $\sum_{n=1}^{\infty} z[n]e^{-j2\pi kF_0n} = \frac{1}{N}$ N^{O} $e^{j2\pi k_0 F_0 n}$ **x** $\left[n \right] e^{-j2\pi k F_0 n}$ $n = \langle N_0$ $\sum_{i=1}^{n}$ $Z[k] = \frac{1}{N_0} \sum_{n = \langle N_0 \rangle} x[n] e^{-j2\pi (k - k_0) F_0 n}$ $n = \langle N_0$ Σ $= X \lfloor k - k_0 \rfloor$ $\overline{O} \left(\frac{n}{N_0} \right)$ $Z\left[k\right] = X\left[k - k_0\right]$ $e^{j2\pi k_0 F_0 n}$ $X[n] \longleftrightarrow X[k-k_0]$.

Conjugation

Let
$$
z[n] = x^* [n]
$$
. Then
\n
$$
Z[k] = \frac{1}{N_0} \sum_{n = \langle N_0 \rangle} z[n] e^{-j2\pi kF_0 n} = \frac{1}{N_0} \sum_{n = \langle N_0 \rangle} x^* [n] e^{-j2\pi kF_0 n}
$$

Conjugating both sides,

$$
Z^* [k] = \frac{1}{N_0} \sum_{n = \langle N_0 \rangle} x[n] e^{j2\pi k F_0 n} = \frac{1}{N_0} \sum_{n = \langle N_0 \rangle} x[n] e^{-j2\pi (-kF_0 n)}
$$

$$
Z^* [k] = X[-k]
$$

$$
Z[k] = X^* [-k]
$$

$$
x^* [n] \leftarrow F S \longrightarrow X^* [-k]
$$

or

and

Time Reversal

Let
$$
z[n] = x[-n]
$$
. Then
\n
$$
Z[k] = \frac{1}{N_0} \sum_{n = \langle N_0 \rangle} z[n] e^{-j2\pi kF_0 n} = \frac{1}{N_0} \sum_{n = \langle N_0 \rangle} x[-n] e^{-j2\pi kF_0 n}
$$

Let $m = -n$. Then if *n* covers a range of N_0 , so does *m* and

$$
Z[k] = \frac{1}{N_0} \sum_{m = \langle N_0 \rangle} x[-m] e^{-j2\pi k F_0(-m)} = \underbrace{\frac{1}{N_0} \sum_{m = \langle N_0 \rangle} x[-m] e^{-j2\pi (-kF_0)m}}_{=x[-k]}
$$

$$
Z[k] = X[-k]
$$

$$
x[-n] \leftarrow \xrightarrow{FS} X[-k]
$$

and

Time Scaling

Let $z[n] = x[n]$, $a > 0$. If *a* is not an integer then some values of $z[n]$ will be undefined and a DTFS cannot be found for it. If *a* is an integer, then $z[n]$ is a decimated version of $x \lfloor n \rfloor$ and some of the values of $x \lfloor n \rfloor$ do not appear in $z \lfloor n \rfloor$. In that case, there cannot be a unique relationship between the harmonic functions of $x \lfloor n \rfloor$ and $z\lfloor n \rfloor$ through the transformation, $n \rightarrow an$ (Figure G-1).

Figure G-1 Two different signals decimated to yield the same signal

However there is an operation for which the relationship between $x[n]$ and $z[n]$ is unique. Let *m* be a positive integer and let

$$
z[n] = \begin{cases} x[n/m] , & n/m \text{ an integer} \\ 0 , & \text{otherwise} \end{cases}.
$$

That is, $z[n]$ is a time-expanded version of $x[n]$ formed by placing $m-1$ zeros between adjacent values of $x \lfloor n \rfloor$ (Figure G-2).

Figure G-2 A DT function and an expanded version formed by inserting zeros between values

If the fundamental period of $x[n]$ is N_{0x} , the fundamental period of $z[n]$ is $N_{0z} = mN_{0x}$. Then the DTFS harmonic function for $z\lfloor n \rfloor$ with a representation time of $N_F = qN_{0z}$, where *q* is an integer is

$$
Z[k] = \frac{1}{N_F} \sum_{n = \langle N_F \rangle} z[n] e^{-j2\pi n k / N_F}.
$$

Since all the values of z are zero when n/m is not an integer,

$$
Z\left[k\right] = \frac{1}{N_F} \sum_{\substack{n = \langle N_F \rangle \\ n/m \text{ an integer}}} z\left[n\right] e^{-j2\pi n k/N_F}.
$$

Let $p = n/m$, when n/m is an integer. Then

$$
Z\left[k\right] = \frac{1}{N_F} \sum_{p=\langle N_F/m\rangle} z\left[mp \right] e^{-j2\pi kmp/N_F}
$$

and $z \lfloor mp \rfloor = x \lfloor p \rfloor$. Therefore, since $N_F / m = q N_{0z} / m = q m N_{0x} / m = q N_{0x}$,

$$
Z\left[k\right] = \frac{1}{N_F} \sum_{p=\langle qN_{0x}\rangle} X\left[p\right] e^{-j2\pi kp/qN_{0x}} = \frac{1}{m} X\left[k\right]
$$

where $X[k]$ is the harmonic function for $x[n]$ using a representation time of qN_{0x} . So the time-scaling property is

.

$$
z[n] = \begin{cases} x[n/m] , & n/m \text{ an integer} \\ 0 , & \text{otherwise} \end{cases}
$$

$$
N_F \to mN_F , Z[k] = (1/m)X[k]
$$

Change of Period

If we know that the DTFS harmonic function of $x[n]$ over the representation time $N_F = mN_{0x}$, where *m* is an integer, is $X[k]$ we can find the harmonic function of $x[n]$ over the representation time qN_F , which is $X_q[k]$, with *q* being a positive integer. It is

$$
\mathbf{X}_q\Big[k\Big] = \frac{1}{qN_{F}}\sum_{n=\langle qN_{F}\rangle}\mathbf{X}\Big[n\Big]e^{-j2\pi nk/qN_{F}}\ .
$$

The DT function $x[n]$ has a period N_F and therefore is represented by DT sinusoids at integer multiples of $1/N_F$. The DT function $e^{-j2\pi nk/qN_F}$ has a fundamental period qN_F and fundamental frequency $1/qN_F$. Therefore, on the DT interval $n_0 \le n < n_0 + qN_F$ the two DT functions $x[n]$ and $e^{-j2\pi nk/qN_F}$ are orthogonal unless k/q is an integer. Therefore, for k/q not an integer, $X_q[k] = 0$. For k/q an integer, the summation over qN_F is equivalent to *q* summations over N_F and

$$
X_q\left[k\right] = q\left(\frac{1}{qN_F}\sum_{n=\langle N_F\rangle}x\left[n\right]e^{-j2\pi nk/qN_F}\right) = \frac{1}{N_F}\sum_{n=\langle N_F\rangle}x\left[n\right]e^{-j2\pi nk/qN_F} = X\left[k\ /\ q\right].
$$

Summarizing,

 $N_F \rightarrow qN_F$, *q* a positive integer $X_q[k] = \begin{cases} X[k/q] \\ 0 \end{cases}$, k/q an integer 0 , otherwise $\overline{ }$ ⇃ \vert $\overline{\mathcal{L}}$

(Figure G-3).

Figure G-3 DT signal and the magnitude of its DTFS harmonic function with $N_F = N_0$ and with $N_F = 2N_0$

Multiplication-Convolution Duality

Let $z[n] = x[n]y[n]$ and let $N_F = mN_{x0} = qN_{y0}$, where *m* and *q* are integers. Then

$$
Z[k] = \frac{1}{N_F} \sum_{n = \langle N_F \rangle} z[n] e^{-j2\pi kn/N_F} = \frac{1}{N_F} \sum_{n = \langle N_F \rangle} x[n] y[n] e^{-j2\pi kn/N_F},
$$

\n
$$
y[n] = \sum_{p = \langle N_F \rangle} Y[p] e^{j2\pi pn/N_F},
$$

\n
$$
Z[k] = \frac{1}{N_F} \sum_{n = \langle N_F \rangle} x[n] \sum_{p = \langle N_F \rangle} Y[p] e^{j2\pi pn/N_F} e^{-j2\pi kn/N_F}
$$

\n
$$
Z[k] = \frac{1}{N_F} \sum_{n = \langle N_F \rangle} x[n] \sum_{p = \langle N_F \rangle} Y[p] e^{-j2\pi (k-p)n/N_F}
$$

\n
$$
Z[k] = \sum_{p = \langle N_F \rangle} Y[p] \frac{1}{N_F} \sum_{n = \langle N_F \rangle} x[n] e^{-j2\pi (k-p)n/N_F}
$$

\n
$$
= x[k-p]
$$

\n
$$
Z[k] = \sum_{p = \langle N_F \rangle} Y[p] X[k-p]
$$

This result looks just like a convolution sum except that *q* extends over a finite range instead of an infinite one. This is a *periodic convolution sum* which is indicated by the notation

$$
Z[k] = Y[k] \otimes X[k].
$$

Therefore

and, using

$$
N_F = mN_{x0} = qN_{y0}
$$

$$
X[n]y[n] \leftarrow^{FS} Y[k] \otimes X[k] = \sum_{p=\langle N_F \rangle} Y[p]X[k-p]
$$
 (G.6)

$$
N_{x0} =
$$

Multiplication of two DT signals corresponds to the convolution of their DTFS harmonic functions but the convolution is now a periodic convolution.

Now let $Z[k] = Y[k]X[k]$ and let $N_F = mN_{x0} = qN_{y0}$, where *m* and *q* are integers. Then $z[n] = \sum_{k} X[k]Y[k]e^{j2\pi kn/N_F}$ $k = \left\langle N_F$ \sum $Z[n] = \sum_{k=\langle N_F \rangle} \frac{1}{N_F} \sum_{p=\langle N_F \rangle} X[p] e^{-j2\pi kp/N_F}$ $p = \left\langle N_F \right\rangle$ $\sum_{\ell=1}^N \mathbb{E}[P] e^{-j2\pi kp/N_F} \mathbb{E}[K] e^{j2\pi kn/N_F}$ $k = \left\langle N_F$ $\sum\limits_{i=1}^n$ $Z[n] = \frac{1}{N_F} \sum_{p=\langle N_F \rangle} X\left[p\right] \sum_{k=\langle N_F \rangle} Y\left[k\right] e^{j2\pi k(n-p)/N_F}$ $k = \left\langle N_F$ $\sum\limits_{i=1}^n$ $k = \sqrt{N_F / T}$

$$
z[n] = \frac{1}{N_F} \sum_{p = \langle N_F \rangle} x[p] y[n-p]
$$

 $=$ y $\lfloor n-p \rfloor$

or

$$
N_F = mN_{x0} = qN_{y0}
$$

$$
\mathbf{x}[n] \circledast \mathbf{y}[n] \leftarrow \xrightarrow{FS} N_F \mathbf{Y}[k] \mathbf{X}[k]'
$$

Multiplication in either domain corresponds to a periodic convolution sum in the other domain (except for a scale factor of N_F in the case of discrete-time periodic convolution).

First Backward Difference

Let $z \lfloor n \rfloor = x \lfloor n \rfloor - x \lfloor n-1 \rfloor$ and let $N_F = mN_{x0} = mN_{z0}$, where *m* is an integer. Then using the time-shifting property,

$$
X[n-1] \longleftrightarrow^{FS} X[k] e^{-j2\pi k/N_0}
$$

and invoking the linearity property,

$$
x[n] + x[n-1] \xleftarrow{FS} X[k] + X[k]e^{-j2\pi k/N_0}
$$

or

$$
N_F = mN_0
$$

$$
X[n] - X[n-1] \xleftarrow{FS} \left(1 - e^{-j2\pi k/N_0}\right) X[k]
$$

Accumulation

Let $z[n] = \sum_{m=-\infty}^{n} x[m]$ $\sum_{m=-\infty}^{n}$ $x[m]$. It is important for this property to consider the effect of the average value of $x[n]$. We can write the signal $x[n]$ as

$$
\mathbf{x}\left[n\right]=\mathbf{x}_{0}\left[n\right]+\mathbf{X}\left[0\right]
$$

where $x_0[n]$ is a signal with an average value of zero and $X[0]$ is the average value of $x\lfloor n \rfloor$. Then

$$
Z[n] = \sum_{m=-\infty}^{n} X_0[m] + \sum_{m=-\infty}^{n} X[0].
$$

Since $X[0]$ is a constant, $\sum_{m=-\infty}^{n} X[0]$ $\sum_{m=-\infty}^{n} X[0]$ increases or decreases linearly with *n*, unless $X[0] = 0$. Therefore, if $X[0] \neq 0$, $z[n]$ is not periodic and we cannot find its DTFS. If the average value of $x[n]$ is zero, $z[n]$ is periodic and we can find a DTFS for it. Since accumulation is the inverse of the first backward difference,

if
$$
z[n] = \sum_{m=-\infty}^{n} x[m]
$$
 then $x[n] = z[n] - z[n-1].$

But remember, multiple signals can have the same backward difference. For example we just showed that x -*n* = z -*n* z -*n* 1 where z *n* = x *m m*=- $\sum_{m=-\infty}^{n}$ x $[m]$. But if we redefine $z\left[n\right]$ as $C + \sum_{m=-\infty}^{n} x\left[m\right]$ $\sum_{m=-\infty}^{\infty}$ *x*[*m*] where *C* is any constant we can still say that $x[n] = z[n] - z[n-1]$. So, in finding the DTFS of the accumulation of a signal we can find it exactly <u>except for the effect of the constant</u>. The constant only affects $Z[0]$. So we can relate the harmonic functions of $x[n]$ and $z[n]$ except for the $k = 0$ values. The first backward difference property proved that $X[k] = (1 - e^{-j2\pi k/N_F})Z[k]$. If follows that

$$
Z\left[k\right] = \frac{X\left[k\right]}{1 - e^{-j2\pi k/N_F}} \quad , \quad k \neq 0 \quad , \text{ if } X\left[0\right] = 0
$$

and

$$
N_F = mN_0
$$

$$
\sum_{m=-\infty}^{n} x \left[m \right] \leftarrow \xrightarrow{FS} \frac{X \left[k \right]}{1 - e^{-j2\pi k/N_F}}, \quad k \neq 0 \quad \text{, if } X \left[0 \right] = 0
$$

Parseval's Theorem

The total signal energy of a periodic signal $x \lfloor n \rfloor$ is infinite (unless it is the trivial signal $x\left[n\right] = 0$). The signal energy over one period $N_F = mN_{x0}$ is defined as

$$
E_{x,N_F} = \sum_{n=\langle N_F \rangle} \left| \mathbf{x}[n] \right|^2 = \sum_{n=\langle N_F \rangle} \left| \sum_{k=\langle N_F \rangle} \mathbf{X}[k] e^{j2\pi kn/N_F} \right|^2
$$

\n
$$
E_{x,N_F} = \sum_{n=n_0}^{n_0+N_F-1} \left(\sum_{k=\langle N_F \rangle} \mathbf{X}[k] e^{j2\pi kn/N_F} \right) \left(\sum_{q=\langle N_F \rangle} \mathbf{X}[q] e^{j2\pi q n/N_F} \right)^*
$$

\n
$$
E_{x,N_F} = \sum_{n=\langle N_F \rangle} \left(\sum_{k=\langle N_F \rangle} \left| \mathbf{X}[k] \right|^2 + \sum_{\substack{k=\langle N_F \rangle q=\langle N_F \rangle \\ k \neq q}} \sum_{q=\langle N_F \rangle} \mathbf{X}[k] e^{j2\pi kn/N_F} \mathbf{X}^* [q] e^{-j2\pi q n/N_F}
$$

\n
$$
E_{x,N_F} = \sum_{n=\langle N_F \rangle} \left(\sum_{k=\langle N_F \rangle} \left| \mathbf{X}[k] \right|^2 + \sum_{\substack{k=\langle N_F \rangle q=\langle N_F \rangle \\ k \neq q}} \sum_{q=\langle N_F \rangle} \mathbf{X}[k] \mathbf{X}^* [q] e^{j2\pi (k-q)n/N_F} \right)
$$

\n
$$
E_{x,N_F} = N_F \sum_{k=\langle N_F \rangle} \left| \mathbf{X}[k] \right|^2
$$

Then

$$
N_F = mN_0
$$

$$
\frac{1}{N_F} \sum_{n = \langle N_F \rangle} \left| \mathbf{x} \left[n \right] \right|^2 = \sum_{k = \langle N_F \rangle} \left| \mathbf{X} \left[k \right] \right|^2
$$

which, in words, says that the average signal power of the signal is equal to the sum of the average signal powers in its DTFS harmonics.