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Web Appendix I -  Derivations of the

Properties of the Discrete-Time Fourier

Transform

I.1 Linearity

Let 
  
z n = x n + y n  where and  are constants.  Then

  

Z F( ) = x n + y n( )e
j2 Fn

n=

= x n e
j2 Fn

n=

+ y n e
j2 Fn

n=

= X F( ) + Y F( )

and the linearity property is

   
x n + y n

F
X F( ) + Y F( )  .

I.2 Time Shifting and Frequency Shifting

Let 
  
z n = x n n

0
.  Then

  

Z F( ) = z n e
j2 Fn

n=

= x n n
0

e
j2 Fn

n=

 .

Let 
  
m = n n

0
.  Then

  

Z F( ) = x m e
j2 F m+ n

0( )

n=

= e
j2 Fn

0 x m e
j2 Fm

n=

= e
j2 Fn

0 X F( )

and the time shifting property is

   
x n n

0

F
e

j2 Fn
0 X F( )  or  x n n

0

F
e

j n
0 X e

j( )  .

Let 
  
Z F( ) = X F F

0
( ) .  Then

  
z n = Z F( )e j2 FndF

1

= X F F
0

( )e j2 FndF
1

 .
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Let 
  

= F F
0
.  Then

  
z n = X( )e

j2 + F
0( )n

d
1

= e
j2 F

0
n

X( )e j2 nd
1

= e
j2 F

0
n

x n

and the frequency shifting property is

   
e

j2 F
0
n

x n
F

X F F
0

( )  or  e
j2 F

0
n

x n
F

X e
j

0( )( )  .

I.3 Time and Frequency Scaling

Let

  

z n =
x n / m    ,   n / m an integer

0              ,   otherwise

where m is an integer.  Then

  

Z F( ) = z n e
j2 Fn

n=

= x n / m e
j2 Fn

n=
n / m  is an integer

Let 
  p = n / m , then 

  
x p = x n / m , for every integer value of p and zero for every

non-integer value of p and

  

Z F( ) = x p e
j2 Fmp

p=

= X mF( )

Therefore

   
z n

F
X mF( )   or  z n

F
X e

jm( )

I.4 Transform of a Conjugate

   

F x
*

n( ) = x
*

n e
j2 Fn

n=

= x n e
+ j2 Fn

n=

*

= X
*

F( )

   
x

*
n

F
X

*
F( )   or  x

*
n

F
X

*
e

j( ) (I.1)
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I.5 Differencing and Accumulation

Using the time-shifting property

   
F x n x n 1( ) = X F( ) e

j2 F
X F( ) = 1 e

j2 F( )X F( )

   
x n x n 1

F
1 e

j2 F( )X F( )
or

   
x n x n 1

F
1 e

j( )X e
j( )  .

Let 
  

z n = x m

m=

n

.  Using the fact that 
  

x m

m=

n

= x n u n ,

  
z n = x n u n Z F( ) = X F( )U F( ) .

Using 
  
U F( ) =

1

1 e
j2 F

+
1

2
1

F( ) ,

  

Z F( ) = X F( )
1

1 e
j2 F

+
1

2
1

F( ) =
X F( )

1 e
j2 F

+
1

2
X 0( )

1
F( ) .

and the accumulation property of the DTFT is

   

x m
m=

n
F

X F( )
1 e

j2 F
+

1

2
X 0( )

1
F( )

or

   

x m
m=

n
F

X e
j( )

1 e
j

+ X e
j0( ) 2

( ) .

I.6 Time Reversal

   

F x n( ) = x n e
j2 Fn

n=

Let  m = n .  Then

   

F x n( ) = x m e
+ j2 Fm

m=

= x m e
j2 F( )m

m=

= X F( )

   
x n

F
X F( )   or  x n

F
X e

j( )



M. J. Roberts - 2/18/07

I-4

I.7 Multiplication - Convolution Duality

Let

  

z n = x n y n = x m y n m

m=

.

Then

  

Z F( ) = z n e
j2 Fn

n=

= x m y n m
m=

e
j2 Fn

n=

.

Reversing the order of summation,

    

Z F( ) = x m
m=

y n m e
j2 Fn

n=

F y n m( )

= x m Y F( )e
j2 Fm

m=

    

Z F( ) = Y F( ) x m e
j2 Fm

m=

F x m( )

= Y F( )X F( ) .

Therefore

   
x n y n

F
X F( )Y F( )

or

   
x n y n

F
X j( )Y j( ) .

Let

  
z n = x n y n .

Then

  

Z F( ) = x n y n e
j2 Fn

n=

.

  

Z F( ) = X( )e j2 nd
1

( )y n e j2 Fn

n=

= X( ) e j2 n
y n e j2 Fnd

n=
1

   

Z F( ) = X( ) y n e
j2 F( )n

n=

Y F( )

d
1

= X( )Y F( )d
1

The last integral 
  

X( )Y F( )d
1

 is  another instance of periodic convolution.

Therefore
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x n y n

F
X F( ) Y F( )   or  x n y n

F 1

2
X e

j( ) Y e
j( )    (I.2)

I.8 Accumulation  Definition of a Periodic Impulse

The CTFT leads to an integral definition of an impulse. In a similar manner the
DTFT leads to an accumulation definition of a periodic impulse.  Begin with the definition

X F( ) = x n[ ]e j 2 Fn

n=

  and  x n[ ] = X F( )e j 2 FndF
1

(I.3)

Then, in

X F( ) = x n[ ]e j 2 Fn

n=

(I.4)

replace x n[ ]  by its integral equivalent x n[ ] = X( )e j 2 nd
1

 (changing F  to  to

avoid confusion between the two F’s appearing in the right-hand equation in (I.3) and in
(I.4) which have different meaning in the two equations).

X F( ) = X( )e j 2 nd
1

e j 2 Fn

n=

= X( )e j 2 F( )nd
0

0 +1

n=

.

or

X F( ) = X p ( )e j 2 F( )nd
n=

= X p F( ) e j 2 Fn

n=

or

X F( ) = X p F( ) e j 2 Fn

n=

(I.5)

where

X p F( ) =
X F( ) , F0 < F < F0 + 1

0 , otherwise

is any arbitrary single period of X F( ) .  Since  X p F( )  is one period of X F( )  and the
period is one, it follows that

X F( ) = X p F( ) 1 F( )  . (I.6)

Therefore, if (I.5) and (I.6) are both true that means that

e j 2 Fn

n=

= 1 F( )



M. J. Roberts - 2/18/07

I-6

and, since 1 F( )  is an even function,

e j 2 Fn

n=

= 1 F( ) .

I.9 Parseval’s Theorem

The total signal energy in 
  
x n  is

  

x n
2

n=

= X F( )e j2 FndF
1

2

n=

= X F( )e j2 FndF
1

( ) X( )e j2 nd
1

( )
*

n=

or

  

x n
2

n=

= X F( ) X
* ( )e

j2 F( )n
d dF

11
n=

.

We can exchange the order of summation and integration to yield

   

x n
2

n=

= X F( ) X
* ( ) e

j2 F( )n

n=

=
1

F( )

d dF
11

  

x n
2

n=

= X F( ) X
* ( ) F( )d dF

11

and

  

x n
2

n=

= X F( )X
*

F( )dF
1

= X F( )
2

dF
1

 ,

proving that the total energy over all discrete-time n is equal to the total energy in one
fundamental period of DT frequency F (that fundamental period being one for any DTFT).
The equivalent result for the radian-frequency form of the DTFT is

  

x n
2

n=

=
1

2
X e j( )

2

d
2

  .


