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Web Appendix P - Complex Numbers and
Complex Functions

P.1 Basic Properties of Complex Numbers

In the history of mathematics there is a progressive broadening of the concept of
“numbers”.  The first numbers were the natural counting numbers, 1,2,3…  Next were
zero and the negative numbers completing the set we now call integers.  Fractions (ratios
of integers) filled in some of the points between integers and later irrational numbers
filled in all the gaps between fractions to form what we now call the real numbers, an
infinite continuum of one-dimensional numbers.

In trying to solve quadratic equations of the form   ax
2

+ bx + c = 0  real solutions

can always be found if   b
2

4ac  is greater than or equal to zero.  But if   b
2

4ac  is less
than zero, no real solution can be found.  The essence of the problem is in trying to solve

the equation   x
2

= 1  for x.  None of the real numbers can be the solution of this equation.
The proposal that an imaginary number could be the solution to this equation led to a
whole new field of mathematics, complex variables.  The idea of complex numbers
seemed artificial and abstract at first but as mathematical and physical theory has
developed, the usefulness of complex numbers solving practical problems has been
conclusively shown.  The square root of minus one has been given the symbol j and

therefore
  j

2
= 1 .

________________________________________________________________________

Different authors use different symbols to indicate the square root of minus one.  A
commonly-used symbol is i.  This is used in many mathematics and physics books.  The
symbol j is preferred in most electrical engineering books to avoid confusion because the
symbol i is usually reserved for electrical current.
________________________________________________________________________

A complex number z can be expressed as the sum of a real number x and an
imaginary number jy where y is also a real number.  In the complex number  z = x + jy , x
is the real part and y is the imaginary part.  (Notice that, although it sounds strange, the
imaginary part   of a   complex   number is a  real  number.)  Two complex numbers are equal
if, and only if, their real and imaginary parts are equal separately.

Let
  
z

1
= x

1
+ jy

1
and z

2
= x

2
+ jy

2
. Then, if 

  
z

1
= z

2
that implies that

  
x

1
= x

2
and y

1
= y

2
.

In the following material the symbol z will represent some arbitrary complex number and
the symbols x and y will represent the real and imaginary parts of z respectively.

The sum and product of two complex numbers are defined as

  
z

1
+ z

2
= x

1
+ jy

1
( ) + x

2
+ jy

2
( ) = x

1
+ x

2
+ j y

1
+ y

2
( ) (P.1)
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and

  
z

1
z

2
= x

1
+ jy

1
( ) x

2
+ jy

2
( ) = x

1
x

2
y

1
y

2
+ j x

1
y

2
+ x

2
y

1
( )   . (P.2)

From (P.1),

  
z + 0 = z + 0 + j0( ) = x + 0( ) + j y + 0( ) = x + jy = z

proving that the number, zero, is the additive identity for complex numbers just as it is for
real numbers.  From (P.2),

  
z 1 = z 1+ j0( ) = x 1( ) y 0( )( ) + j x 0( ) + y 1( )( ) = x + jy = z

proving that the real number 1 is the multiplicative identity for complex numbers, just as it
is for real numbers.

By a straightforward extension of the law of addition, subtraction is defined by

  
z

1
z

2
= x

1
x

2
+ j y

1
y

2
( ) .

Division can be derived from multiplication and the result is

  

z
1

z
2

=
x

1
x

2
+ y

1
y

2

x
2

2
+ y

2

2
+ j

x
2
y

1
x

1
y

2

x
2

2
+ y

2

2
= x

3
+ jy

3
= z

3

It follows that

  

z

z
= 1 ,

z
1

z
2

= z
1

1

z
2

and
1

z
1
z

2

=
1

z
1

1

z
2

, z
1

0 , z
2

0( )  .
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________________________________________________________________________

Example P-1 Adding, subtracting, multiplying and dividing complex numbers with
MATLAB

  
3+ j2( ) + 1+ j6( ) = 2 + j8 ,

  
3+ j2( ) 1+ j6( ) = 4 j4

  
3+ j2( ) 1+ j6( ) = 15 + j16 ,

  

3+ j2

1+ j6
=

9

37
j
20

37

MATLAB handles complex numbers just as easily as real numbers.  These four
numerical calculations can be done by MATLAB directly at the computer console in the
interactive mode.  Below is a copy of a MATLAB session doing these calculations.

»A = 3 + j*2 ; B = -1+j*6 ;

»A + B

ans =

   2.0000 + 8.0000i

»A - B

ans =

   4.0000 - 4.0000i

»A*B

ans =

 -15.0000 +16.0000i

»A/B

ans =

   0.2432 - 0.5405i

The square root of minus one is predefined in MATLAB and is the default value of the
variables i and j.
________________________________________________________________________

The commutativity and associativity of complex numbers under addition and
multiplication,

  
z

1
+ z

2
= z

2
+ z

1
, z

1
+ z

2
+ z

3( ) = z
1
+ z

2( ) + z
3

(P.3)

and

  
z

1
z

2
= z

2
z

1
, z

1
z

2
z

3( ) = z
1
z

2( ) z
3
 , (P.4)

and the distributivity of complex numbers,

  
z

1
z

2
+ z

3
( ) = z

1
z

2
+ z

1
z

3
 , (P.5)

can be proven from the definition of complex numbers and the commutativity,
associativity and distributivity of real numbers.  These properties (P.3), (P.4) and (P.5)
lead to the results
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z
1
+ z

2

z
3

=
z

1

z
3

+
z

2

z
3

and
z

1
z

2

z
3
z

4

=
z

1

z
3

z
2

z
4

, z
3

0 , z
4

0( ) .

Just as any real number can be geometrically represented as a point in a one-
dimensional space (the real line), any complex number can be represented geometrically
by a point in a two-dimensional space, the complex plane (Figure P-1). The complex plane
has two orthogonal axes, the real axis and the imaginary axis.  Any particular complex

number 
  
z

0
 is defined by its real and imaginary parts 

  
x

0
  and 

  
y

0
.

x

y
[z]
z0y0

x0

Figure P-1  The complex plane

A vector from the origin of the complex plane to a point can also be used to represent a
complex number.  The sum and difference of two complex numbers can be found by the
usual rules of vector addition and subtraction.   In Figure P-2 are two examples of the
addition of two complex numbers.

x

y
(2+j) + (-1+j3) = 1+j4

(-4-j4) + (2+j6) = -2+j2

2+j

-1+j3

-4- j4

-2+j22+j6

1+j4

Figure P-2  Graphical addition of complex numbers by vector addition

The complex conjugate of a complex number is found by negating its imaginary
part.  It is indicated by the addition of a superscript asterisk “*” to the number.

If
  
z

0
= x

0
+ jy

0
 the complex conjugate of 

  
z

0
 is

  
z

0

*
= x

0
jy

0
.  The complex conjugate of a

complex number is its reflection in the real axis of the complex plane (Figure P-3).
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x

y
[z]

z0

-y0

y0

x0
z0*

Figure P-3  Complex conjugates

Some properties of conjugates that can be derived from earlier properties of complex
numbers are

  

z
1
+ z

2( )
*

= z
1

*
+ z

2

*
, z

1
z

2( )
*

= z
1

*
z

2

*
, z

1
z

2( )
*

= z
1

*
z

2

*
,

z
1

z
2

*

=
z

1

*

z
2

*

Also the sum of any complex number and its conjugate is real, and the difference between
any complex number and its conjugate is imaginary.

The absolute value 
 
z  (or magni tude  or modulus) of a complex number,

 z = x + jy , is the length of the vector in the complex plane which represents z, which is

(from the Pythagorean theorem) 
  
z = x

2
+ y

2 .

Pythagoras of Samos, 569 BC – 475 BC

By extension, the distance between any two complex numbers 
  
z

1
and

  
z

2
 in the complex

plane is

  
z

1
z

2
= x

1
x

2
( )

2

+ y
1

y
2

( )
2

.
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The magnitude of a complex number is a real number 
  
z = x

2
+ y

2
+ j0 .  A handy

relation in the study of complex variables and functions of a complex variable is

  
z

2

= zz
*

= x
2

+ y
2 .  Also,

  
z

1
z

2
= z

1
z

2
  ,  

  

z
1

z
2

=
z

1

z
2

.

P.2 The Polar Form

It is often convenient in analysis to represent a complex number in polar form.
Instead of specifying its real and imaginary parts, we specify its magnitude  r  and the
angle  that its vector representation in the complex plane makes with the positive real
axis, with the counter-clockwise direction being positive.  The relations are

  
x = r cos( ) and y = r sin( )    and  

  
z = r cos( ) + j sin( ) .

The length of the vector  r  is the magnitude of the complex number 
 
r = z  and the angle

or phase  is related to x and y by 
  
tan( ) = y / x  (Figure P-4).

x

y
[z]
z0r0

θ0

Figure P-4  The polar form of a complex number

There is more than one value of  that satisfies 
  
tan( ) = y / x , therefore the angle or

phase of a complex number is multiple valued.  If  is a solution, so is  + 2n  where n is
any integer.  One special case is worthy of note; the case

  x = y = 0 .  In this case, the ratio

  y / x  is undefined.  That means that
  
tan( ) = y / x  and, by implication,  are also

undefined.  The phase of a complex number whose magnitude is zero is undefined.  This
should not be cause for alarm.  If the magnitude is zero, the vector from the origin of the
complex plane to the complex number is a zero-length vector, or a point, the origin.
Geometrically the angle from the positive real axis to this vector has no meaning because
the vector has no length and therefore, no direction.  Also, since the real and imaginary

parts of the complex number are found from
  
x = r cos( ) and y = r sin( ) , if r is zero, x
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and y are also zero regardless of the value of .  So the mathematics is telling us
something logical (as it usually does).  If the magnitude is zero, phase has no meaning!

The product of two complex numbers, written in polar form, is

  
z

1
z

2
= r

1
cos

1
( ) + j sin

1
( ) r

2
cos

2
( ) + j sin

2
( )

  
z

1
z

2
= r

1
r

2
cos

1
( )cos

2
( ) sin

1
( )sin

2
( ) + j cos

1
( )sin

2
( ) + sin

1
( )cos

2
( ){ }

  

z
1
z

2
=

r
1
r

2

2

cos
1 2

( ) + cos
1
+

2
( ) cos

1 2
( ) cos

1
+

2
( )

+ j sin
2 1

( ) + sin
2

+
1

( ) + sin
1 2

( ) + sin
1
+

2
( )

  
z

1
z

2
= r

1
r

2
cos

1
+

2
( ) + j sin

2
+

1
( )

The magnitude of the product of two complex numbers is the product of their magnitudes
and the angle of the product of two complex numbers is the sum of their angles.  Applying
this idea to the product of multiple complex numbers leads to De Moivre’s theorem

  
z

n
= r

n
cos n( ) + j sin n( ) .

It also follows that the magnitude of the quotient of two complex numbers is the quotient
of their magnitudes and the angle of the quotient of two complex numbers is the difference
of their angles

  

z
1

z
2

=
r
1

r
2

cos
1 2( ) + j sin

1 2( ) , r
2

0 .

Abraham de Moivre, 5/26/1667 - 11/27/1754
________________________________________________________________________

Example P-2 Polar-to-rectangular and rectangular-to-polar number conversions
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9 + j7 = 11.4 cos 0.661( ) + j sin 0.661( ) or 11.4 0.661 or 11.4 37.87°

   
4 + j8 = 8.94 cos 2.034 + j sin 2.034( )( ) or 8.94 2.034or 8.94 116.57°

  
9 + j7( ) 4 + j8( ) = 11.4 cos 0.661( ) + j sin 0.661( ) 8.94 cos 2.034( ) + j sin 2.034( )

  
9 + j7( ) 4 + j8( ) = 11.4 8.94 cos 0.661+ 2.034( ) + j sin 0.661+ 2.034( )

  
9 + j7( ) 4 + j8( ) = 101.98 cos 2.695( ) + j sin 2.695( ) = 92 + j44

  

9 + j7

4 + j8
=

11.4 cos 0.661( ) + j sin 0.661( )
8.94 cos 2.034( ) + j sin 2.034( )

=
11.4

8.94
cos 0.661 2.034( ) + j sin 0.661 2.034( )

  

9 + j7

4 + j8
= 1.275 cos 1.373( ) + j sin 1.373( ) =

1

4
j
5

4

In MATLAB,

»A = 9+j*7 ; B = -4+j*8 ;

»abs(A)

ans =

   11.4018

»angle(A)

ans =

    0.6610

»abs(B)

ans =

    8.9443

»angle(B)

ans =

    2.0344

»A*B

ans =

 -92.0000 +44.0000i

»abs(A*B)

ans =

  101.9804

»angle(A*B)

ans =

    2.6955

»A/B

ans =

   0.2500 - 1.2500i
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»abs(A/B)

ans =

    1.2748

»angle(A/B)

ans =

   -1.3734
________________________________________________________________________

The nth root 
 
z

o
 of a complex number z is the solution of the equation 

  
z

0

n
= z

where n is a positive integer.  In polar form,

  
z = r cos( ) + j sin( ) and z

0
= r

0
cos

0
( ) + j sin

0
( ) .

Then

  
r
0

n
cos n

0
( ) + j sin n

0
( ) = r cos( ) + j sin( )

and the solutions of  for r  and 
 0

 are

  

r
0

= r
n

and
0

=
+ 2k

n
,  k an integer,

and there are exactly n distinct values.  The n distinct nth roots of the real number, +1, are

   
1

1/ n
= cos 2k / n( ) + j sin 2k / n( ) , k = 0,1,…,n 1 .

Notice that each of the nth roots of any complex number lies on a circle in the complex
plane.  The circle is centered at the origin, the radius of the circle is the positive real nth
root of the magnitude of the complex number and the n nth roots are spaced at equal
angular intervals of   2 / n  radians (Figure P-5).  Therefore, in any problem of finding
roots of a complex number, if we can find one root, the others are easily found by putting
them in a symmetrical array of complex numbers with the same magnitude and the proper
angular spacing.  Usually the easiest root to find first is the one whose magnitude is the
positive real nth root of the magnitude of the complex number and whose angle is the
angle of the complex number, divided by n.
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-4
x

y

[z]
(-4)

2

2-   2

-   2

1
4

x

y

[z]
(-j)

1
3

1

1

-1

-1
Figure P-5    Roots of complex numbers

MATLAB has a function for finding the roots of an equation roots.  If the
equation is of the form

   
a

n
z

n
+ a

n 1
z

n 1
+ a

2
z

2
+ a

1
z + a

0
= 0  , (P.6)

then  the  MATLAB command r o o t s ( [
   
a

n
a

n 1
a

2
a

1
a

0
] )  or

roots([
   
a

n
,a

n 1
, a

2
,a

1
,a

0
])  or roots([

   
a

n
;a

n 1
; a

2
;a

1
;a

0
]) returns all the distinct

roots of (P.6).  For example,

»roots([3 2])

ans =

   -0.6667

or

»roots([9,1,-3,6])

ans =

  -1.0432           

   0.4661 + 0.6495i

   0.4661 - 0.6495i

or

»roots([2 ; j*3 ; 1 ; -9])

ans =

  -0.6573 - 2.1860i
  -0.7464 + 1.1162i
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   1.4037 - 0.4301i

P.3 Functions of a Complex Variable

In the study of signals and systems, probably the most important of the functions
of a complex variable is the exponential function, defined as

  
exp z( ) = e

x cos y( ) + j sin y( )  . (P.7)

Common nomenclature in signal and system analysis is that the exponential function of a
complex variable is called a complex exponential.  Note that if

  y = 0  in (P.7), z becomes
real and this definition collapses to the more familiar definition of the exponential function

for real variables 
  
exp z( ) = exp x( ) = e

x .  If z is purely imaginary in (P.7)   x = 0  and

  
exp jy( ) = cos y( ) + j sin y( ) .

This is known as Euler’s (pronounced “oilers”) identity after Leonhard Euler one of the
great early mathematicians.

Leonhard Euler, 4/15/1707 - 9/18/1783

The most common occurrences of the complex exponentials in signal and system theory
are with either time t or cyclic frequency f or radian frequency  as the independent variable, for
example

  
x t( ) = 24e 0

j
0( )t

or X f( ) = 5e
j2 ft

0 or X j( ) = 3e j4

where 
 o

,
 0

 and 
  
t
0
 are real constants. When the argument of the exponential function is purely

imaginary, the resulting complex exponential is called a complex sinusoid because it contains a
cosine and a sine as its real and imaginary parts as illustrated in Figure P-6 for a complex
sinusoid in time.  The projection of the complex sinusoid onto a plane parallel to the plane
containing the real and t axes is the cosine function and the projection onto a plane parallel to the
plane containing the imaginary and t axes is the sine function.
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A

A

-A

-A

Re

Im

t

Ae        = j2πf  t0 Ae jω  t0

T0

2T0

3T0

0 0Asin(2πf  t) = Asin(ω  t)

0 0Acos(2πf  t) = Acos(ω  t)

T =      = 0
0
f
1

0ω
2π

Figure P-6  Relation between a complex sinusoid and a real sine and a real cosine

Other important properties of the exponential function are

  

exp z
1( )

exp z
2( )

= exp z
1

z
2( )   ,  

  
exp z( )

n

= exp nz( )

   

exp z( )
m

n = exp
m

n
z + j2k( ) , k = 0,1, n 1

The exponential function is periodic with period j2 .  That is, it is periodic  in the
imaginary dimension  .  This is shown from the definition, (P.7), by substituting 

  z + j2n

for z

  
exp z + j2n( ) = e

x cos y + 2n( ) + j sin y + 2n( ) = e
x cos y( ) + j sin y( ) = exp z( )

n an integer.  Also
  
exp z

*( ) = exp z( )
*

.  Lastly, if a particular complex number z is

represented by the polar form 
  
z = r cos( ) + j sin( )  then, from Euler’s identity one can

write 
  
z = r exp j( ) = re

j which is a convenient way of representing a complex number in

many types of analysis.  From Euler’s identity one can form 
  
e

j
= cos( ) j sin( ) .

Adding 
  
e

j
= cos( ) + j sin( )  and 

  
e

j
= cos( ) j sin( ) ,

  
e

j
+ e

j
= 2cos( ) cos( ) =

e
j

+ e
j

2
.

Similarly,
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sin( ) =
e

j
e

j

j2
.

These two results are important because they show again the intimate relationship between
sines, cosines and complex exponentials.  It is important to note that if  is a real number,

then the function 
 
cos( )  is real-valued.  But the equality

  
cos( ) =

e
j

+ e
j

2

expresses this  real –valued   function of a  real  variable in terms of a combination of

complex-valued   functions.  This only works because 
  e

j
and e

j  are complex conjugates
(for real ) and when a number is added to its complex conjugate the sum is real.

Other properties of trigonometric functions of a complex variable are summarized
below:

  

d

dz
sin z( )( ) = cos z( ) and

d

dz
cos z( )( ) = sin z( )

  

tan z( ) =
sin z( )
cos z( )

  
cos z( ) =

e
y

+ e
y

2
cos x( ) j

e
y

e
y

2
sin x( )

  
sin

2
z( ) + cos

2
z( ) = 1

  
sin z

1
+ z

2
( ) = sin z

1
( )cos z

2
( ) + cos z

1
( )sin z

2
( )

  
cos z

1
+ z

2
( ) = cos z

1
( )cos z

2
( ) sin z

1
( )sin z

2
( )

  
sin z( ) = sin z( ) and cos z( ) = cos z( )

  

sin
2

z = cos z( )

  
sin 2z( ) = 2sin z( )cos z( ) and cos 2z( ) = cos

2
z( ) sin

2
z( )



M. J. Roberts - 2/18/07

P-14

MATLAB implements all the exponential and trigonometric functions.  The
exponential function is exp, the sine function is sin, the cosine function is cos, the tangent
function is tan, etc...  In the trigonometric functions, the argument is always interpreted as
an angle in radians.  For example,

»exp(1)

ans =

    2.7183

»exp(-j*pi)

ans =

    -1

»cos(3*pi/4)

ans =

   -0.7071

»tan(-pi/4)

ans =

   -1.0000

P.4 Complex Functions of a Real Variable

In transform analysis there are many examples of complex functions of a real
variable.  Since the function value is complex, it cannot be as simply graphed as a single
plot of a real function of a real variable.  There are several methods of plotting functions
like this and each has its advantages and disadvantages.  We can plot the real and
imaginary parts separately as functions of the real independent variable or plot the
magnitude and phase separately as functions of the real independent variable or plot the
real and imaginary parts versus the independent variable in one three-dimensional
isometric plot.  As an illustrative example, suppose we want to plot the function

  
x t( ) = e

j2 t .  Figure P-7 through Figure P-9 illustrate the three types of plots of this

function.
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t
2

Re(x(t))

-1

1

t
2

Im(x(t))

-1

1

Figure P-7  Real and imaginary parts plotted separately versus the independent variable

t
2

|x(t)|

1

t
2

Phase of x(t)

-π

π

Figure P-8    Magnitude and phase plotted separately versus the independent variable

t2

1

Re(x( t ))
1

Im(x( t ))

1

-1

-1

Figure P-9  Real and imaginary parts plotted together versus the independent variable in a
three-dimensional isometric plot

Although plots of the real and imaginary parts are sometimes useful, for most
analysis purposes, separate plots of the magnitude and phase of a complex function of a
real variable are preferred.  In the study of transform methods, the independent variable
will often be frequency f or  instead of time t.

Consider a complex function of radian frequency 



M. J. Roberts - 2/18/07

P-16

  

H j( ) =
1

1+ j
.

How would we plot its magnitude and phase?  The square of the magnitude of any
complex number is the product of the number and its complex conjugate.  Therefore the

magnitude of 
  
H j( ) is 

  
j( ) = j( ) *

j( ) .  In this case

  

j( ) =
1

1+ j

1

1 j
=

1

1+
2

=
1

1+
2

.

The phase of a complex number is the inverse tangent of the ratio of its imaginary part to

its real part.  The real and imaginary parts of 
  
H j( )  are

  

Re H j( )( ) = Re
1

1+ j

1 j

1 j
= Re

1 j

1+
2

=
1

1+
2

and

  

Im H j( )( ) = Im
1

1+ j

1 j

1 j
= Im

1 j

1+
2

=
j

1+
2

.

Therefore the phase of 
  
H j( )  is

   

H j( ) = tan
1

Im H j( )( )
Re H j( )( )

= tan
1

j

1+
2

1

1+
2

= tan
1

j( ) .

It should be noted here that the inverse tangent function is    multiple-valued   .  This means

that, strictly speaking, there is a  countable infinity   of correct values of 
   

H j( )  at any

arbitrary value of .  (There is also an   uncountable infinity of incorrect  values!)  If  is

any correct value of 
   

H j( ) , then   + 2n , n any integer, is also a correct value of 

because the sines of  and   + 2n  are identical and the cosines of  and   + 2n  are

identical and therefore the real part of 
  
H j( )

  
H j( ) cos + 2n( )  is the same for any

integer value of n and the imaginary part of 
  
H j( )  

  
H j( ) sin + 2n( )  is also the same

for any integer value of n.  To avoid any needless confusion caused by the multiple-valued
nature of the inverse tangent function it is conventional to restrict plots of phase to lie in
some range of angles for which the inverse tangent function is single-valued, for example,

< .  This simply means that when we evaluate the inverse tangent function we
choose a correct value that lies in that range.  Since any correct phase is as good as any
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other this causes no problems.  Using this convention, the magnitude and phase of 
  
H j( )

versus frequency are illustrated in Figure P-10.

ω
-10 10

|H(jω)|

1

 

ω
-10 10

H(jω)
π
2

π
2

-

Figure P-10    Magnitude and phase of 
  

H j( ) =
1

1+ j

These plots were made using MATLAB so they would be very accurate.  But it is
important to develop quick approximate methods to visualize and sketch the magnitude
and phase of complex functions of a real variable.  This is a skill that helps an engineer in
the design and analysis of systems.  Look again at the function

  

H j( ) =
1

1+ j
.

We can get a very good quick indication of the general shape of the magnitude and phase
by finding the magnitude and phase at some extreme points,  approaching zero from
above or below and  approaching plus or minus infinity.

For  equal to zero, the denominator 
  1+ j  of 

  
H j( )  is simply 1 and 

  
H j( )

obviously equals one, the  real number   one whose magnitude is one and whose phase is

zero.  For    approaching   zero from above (from positive values) the phase of 
  
H j( )  is

the phase of the numerator (which is zero) minus the phase of the denominator.  The phase
of the denominator for small positive  is a small positive phase.  Therefore the phase of

  
H j( )  is zero minus a small positive phase, that is, a small negative phase.  This shows

that as  approaches zero from above the phase is negative and approaching zero.  By
similar reasoning as  approaches zero from below (from negative values), the phase is
positive and approaching zero.  This analysis is confirmed by the phase plot in Figure
P-10.
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As  approaches positive infinity, the denominator 
  1+ j  becomes infinite in

magnitude and, since the numerator is finite, the magnitude of 
  
H j( )  approaches zero.

Also the 1 in the denominator 
  1+ j  of 

  
H j( )  becomes negligible in comparison with

 j  and the phase of 
  
H j( )  approaches zero minus  / 2  which is  / 2  radians.  As 

approaches negative infinity, the phase of 
  
H j( )  approaches zero minus  / 2  which is

 / 2  radians.  These limits are also confirmed by Figure P-10.  For a function as simple

as this example, we can sketch a fairly accurate magnitu
  1 f 2

+ jf de and phase plot very
quickly just using these simple principles.

Now let’s try a somewhat more complicated example, a complex function of cyclic
frequency f

  

H f( ) =
1 f 2

1 f 2
+ jf

.

Using the quick-approximation ideas just presented, at 
  f = 0  

  
H f( )  is 1.  For f

approaching zero from above, the phase is the phase of 
  1 f 2 , which for small f is zero,

minus the phase of 
  1 f 2

+ jf , which for small positive f is a small positive phase.
Therefore the phase for f approaching zero from above is a small negative phase
approaching zero.  Similarly for f approaching zero from below the phase is a small
positive phase approaching zero.

For f approaching either positive or negative infinity, the 
  f

2  terms in the

numerator 
  1 f 2  and in the denominator  dominate and the ratio of numerator to

denominator approaches 
  

f 2( ) / f 2( )  which is one.  So the magnitude approaches one

and the phase approaches zero in that limit.  So far we see that for very small or very large
values of f, the magnitude approaches one and the phase approaches zero.  We might be
inclined to assume that the magnitude is one for all frequencies.  But consider the case

  f = ±1.  At those values of f, the magnitude of 
  
H f( )  is zero.  Therefore the magnitude

must begin at one for 
  f = 0 , go to zero at 

  f = ±1 and approach one for f approaching
± .  Also, as f approaches  +1 from below, the numerator is a small positive real number
with a phase of zero, and the denominator is a small positive number plus an imaginary
number approaching j.  The denominator phase is approaching  / 2  so the phase of

  
H f( )  is approaching  / 2 .  As f approaches zero from above, the numerator is a small

negative real number with a phase of , the phase of the denominator approaches  / 2

and the phase of 
  
H f( )  approaches  / 2 .  So as f moves from just below  +1 to just above

 +1, the phase changes discontinuously from  / 2  to  / 2 .  Notice that this
discontinuity in the phase occurs where the magnitude is exactly zero.  Figure P-11 is a
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plot generated by MATLAB of the magnitude and phase of  
  
H f( )  and it confirms all

these observations about the magnitude and phase.

-8 -1 81

-1 1-8 8

1

f 

f 

π
2

π
2

1 - f 
2

1 - f  + jf 
2

1 - f 
2

1 - f  + jf 
2

Figure P-11  Magnitude and phase of a complex function of a real frequency

We have already explored the multiple-valued nature of the inverse tangent function.
There is one more wrinkle in the computation of phase that is important.  We will
illustrate it by finding the phase of the complex number 

  z = 1+ j .  If we take a simple
direct approach using a hand-held calculator we might calculate the phase as

  

Phase of z = tan
1

1

1
= tan

1
1( ) =

4
.

However a plot of z in the complex plane (Figure P-12) shows that this answer is wrong.
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x 

y

z
1

-1

θ

Figure P-12  Location of 
  1+ j  in the complex plane

The plot shows that z lies in the second quadrant.  The calculator result indicates that z lies
in the fourth quadrant.  Instead of simply evaluating the inverse tangent of a complex
number or function we should evaluate the four-quadrant inverse tangent using our
knowledge of the real and imaginary parts separately instead of knowledge of their ratio
alone.  This enables us to locate the quadrant in which the number lies and eliminate a
false answer which lies at  radians from the correct answer in the diagonally-opposite
quadrant.  The problem in using the simple inverse tangent function without thinking is
that

   

1+ j( ) = tan
1

1

1
= tan

1
1( ) =

4

and

   

1 j( ) = tan
1

1

1
= tan

1
1( ) =

4
.

A hand-held calculator typically returns a value  using the inverse tangent function, in
the range  / 2 < / 2 .  The exact location of the complex number in the complex
plane is lost when the ratio of the imaginary to real part is taken.  Therefore any four-
quadrant inverse tangent must take two arguments, the real and imaginary parts separately,
rather than their ratio.  (MATLAB has a function angle which finds the four-quadrant
angle or phase of a complex number.)  Using a four-quadrant inverse tangent, the correct
answer  in this example would be

   

1+ j( ) = tan
1

1

1
=

3

4
.

What is the phase of the real number -1?  Using the four quadrant tangent, the
answer is  (plus or minus any integer multiple of 2 ).  Therefore when plotting the
magnitude and phase of a real-valued function the magnitude is always non-negative and
the phase switches back and forth between zero and  (or ) as the function values go
through zero.  Of course, plotting the magnitude and phase of a real function is a little silly
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since it can be plotted with positive and negative values on a single plot.  But, as
illustrated above, as soon as the function becomes complex, magnitude and phase plots are
one of the best ways to graphically represent the function.
________________________________________________________________________

Example P-3 Magnitude and phase of a complex function of a real variable

Using MATLAB, plot the magnitude and phase of the function,

  

X f( ) =
1 f 2

1 f 2
+ jf

versus f, which appears in Figure P-11.

This function can be easily plotted using the fplot command in MATLAB.  The
following sequence of MATLAB commands produces the plot of the magnitude and phase
of this function in Figure P-13.

subplot(2,1,1) ; fplot('abs((1-f^2)/(1-f^2+j*f))',[-8,8],'k') ;

xlabel('Frequency, f (Hz)') ; ylabel('|X(f)|') ;

subplot(2,1,2) ; fplot('angle((1-f^2)/(1-f^2+j*f))',[-8,8],'k') ;

xlabel('Frequency, f (Hz)') ; ylabel('Phase of X(f)') ;

-8 -6 -4 -2 0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Frequency, f (Hz)

|X
(f

)|

-8 -6 -4 -2 0 2 4 6 8
-2

-1

0

1

2

Frequency, f (Hz)

P
ha

se
 o

f X
(f

)

Figure P-13  Magnitude and phase of 

  

X f( ) =
1 f 2

1 f 2
+ jf

Although this plot is easy to generate it does not allow as much user control over
formatting and scaling as a somewhat more involved plotting technique.  We are plotting a
continuous function of the variable f.  MATLAB does not know what a “continuous”
function is. MATLAB can only draw straight lines.  Therefore we must formulate the
problem so as to get a plot that looks like the continuous function using numerical
calculations and plotting with straight lines (Figure P-14).
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Actual 
Function

What MATLAB 
Draws

Functional Values
Computed by MATLAB

t

g(t)

Figure P-14    Illustration of how MATLAB plots an approximation to a function

When we use fplot MATLAB decides how to assign the values of the independent
variable at which the function values will be calculated.  Although the algorithm used by
MATLAB is generally very good we can have more control over the plotting of the
function and formatting of the plot if we generate the independent variable values
ourselves and use the plot command instead.  The plot command is more primitive than
the fplot command but it also allows the programmer more options in plotting.

In order to get a smooth looking curve we must be sure that the points in f are close
enough together that when we draw straight lines between points the result looks like the

actual curved contours of 
 
X f( ) . The plot in Figure P-11 covers the range 

  8 < f < 8 .
How many points do we need to make the plot look smooth?  The main requirement on
how close the points should be is to resolve the region around 

  f = ±1 where there are
some sharp corners in the function’s magnitude and phase.  Let’s try a spacing between
points of  1 / 10 .  The MATLAB program then might look like the following code.

% Program to plot the function, (1-f^2)/(1-f^2+j*f)

%-----------------------------------------------------------------

% This section actually calculates values of the function

%-----------------------------------------------------------------

df = 1/10 ; %  "df" - spacing between frequencies

fmin = -8 ; fmax = 8 ; %  "fmin" & "fmax" - beginning and ending 

%    frequencies

f = fmin:df:fmax ; %  "f" - vector of frequencies for

 %    plotting function with straight lines 

%    between points

X = (1-f.^2)./(1-f.^2+j*f) ; %  "X" - vector of function values

%-----------------------------------------------------------------

% This section displays the results and formats the plots

%-----------------------------------------------------------------

subplot(2,1,1) ; %  Plot two plots, one on top and one on 

%    the bottom.   

%  First draw the top plot.

p = plot(f,abs(X),'k') ; %  Plot |X(f)| with black lines between

%    points
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set(p,'LineWidth',2) ; %  Make the plot line heavier

xlabel('Frequency, f (Hz)') ; %  Label the "f" axis

ylabel('|X(f)|') ; %  Label the "|X(f)|" axis

title('Plot of (1-f.^2)./(1-f.^2+j*f)') ; %  Title the plots

subplot(2,1,2) ; %  Draw the second plot.

p = plot(f,angle(X),'k') ; %  Plot the phase (angle) of X(f) with

%    black lines between points

set(p,'LineWidth',2) ; %  Make the plot line heavier

xlabel('Frequency, f (Hz)') ; %  Label the "f" axis

ylabel('Phase of X(f)') ; %  Label the "Phase of X(f)" axis

The actual MATLAB graph is displayed in Figure P-15.
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Figure P-15  MATLAB plots of the magnitude and phase of 
  

X f( ) =
1 f 2

1 f 2
+ jf

Although this plot looks very much like Figure P-11, it is not exactly the same.  The jumps
in the phase plot are not as nearly vertical as in Figure P-11.  That is because the spacing
between points is not quite small enough.  Figure P-16 is the phase plot, redone with the
point locations indicated by small dots.
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Figure P-16  MATLAB plot of the phase emphasizing the points at which phase is actually
calculated

Try a smaller spacing and see what your plot looks like.  (This is our first consideration of
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the sampling problem of representing a continuous function by discrete samples.)

Why is there a jump in the phase anyway?  Does the phase of 
  
X f( )  really change

discontinuously at
  f = ±1?  Notice that the size of the jump is exactly  radians.  One way

to grasp what is really happening near 
  f = ±1 is to graph the imaginary part of 

  
X f( )

versus the real part of 
  
X f( )  in the complex plane, for a succession of f’’s near 

  f = 1

(Figure P-17).

Re(X(f))

Im(X(f))

f  = 0.9

f  = 0.95

f  = 1

f  = 1.05

f  = 1.1

Figure P-17  Plot of the imaginary part of 
  
X f( )  versus the real part of 

  
X f( )

At
  f = 1 , the plot goes through the origin of the complex plane, tangent to the imaginary

axis.  Therefore the angle of a vector from the origin to the complex value of 
  
X f( )

approaches  / 2  just before reaching the origin and as it passes through the origin the
angle changes suddenly to + / 2 , agreeing with the plot in Figure P-15.  So the phase  is

discontinuous  , even though the complex value of 
  
X f( )   is continuous !  This can only

happen where the complex value of 
  
X f( )  passes through zero.  At any other point in the

complex plane a phase discontinuity would cause a discontinuity in the complex value of

  
X f( ) .  (    Unless   the size of the discontinuity of phase is  exactly   an integer multiple of 2

radians.  In the case in which the discontinuity of phase is exactly an integer multiple of
2  radians the phase discontinuity is only apparent, not real, because we can always
replace that phase with one which is continuous, making the phase plot again continuous.)
________________________________________________________________________
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Exercises

(On each exercise, the answers listed are in random order.)

1. Find all the solutions of

(a)   z
2

+ 8 = 2 (b)   z
2

2z + 10 = 0 (c)   7z
2

+ 3z + 8 = 5

Answers:
  0.2143 ± j0.6186

  ± j 6
  1± j3

2. If 
  
z

1
= 3 j6  and 

  
z

2
= 2 + j8  and  z = x + jy , find x and y in each case.

(a)
  
z = z

1
+ z

2
(b)

  
z = z

1
z

2
(c)

  
z = z

2
z

1

(d)
  
z = z

1
z

2
(e)

  

z =
z

1

z
2

(f)
  

z =
z

2

z
1

(g)
  

z =
1

z
1

(h)
  

z =
1

z
2

Answers:
  

1

34
j

2

17
  1+ j14

  

1

15
+ j

2

15
  5 + j2

  54 + j12

  

14

15
+ j

4

5
  1 j14

  

21

34
j

9

17

3. If 
  
z

1
=

1+ j2

5
 and 

  
z

2
= j 4 j3( )  and  z = x + jy , find x and y in each case.

(a)
  
z = z

1
+ z

2
(b)

  
z = z

1

*
+ z

2
(c)

  
z = z

2

*

(d)
  
z = z

2
+ z

2

* (e)
  
z = z

2
z

2

* (f)
  
z = z

1
z

1

*

(g)
  

z =
z

1

z
2

*

Answers:
  

16

5
+ j

18

5
  3 j4

 

1

5
 6

  

16

5
+ j

22

5
  j8

  

1

25
+ j

2

25
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4. If 
  
z

1
= j 3( )

*

 and 
  

z
2

=
3 j2

4 j
 find 

 
z  in each case.

(a)
  
z = z

1
(b)

  
z = z

2
(c)

  
z = z

1
z

1

*

(d)
  
z = z

2
z

2

* (e)
  
z = z

1
+ z

2

* (f)
  
z = z

2
z

1

*

(g)
  

z =
z

1
+ z

2

z
1

(h)
  

z =
z

1

z
1

*
(i)

  

z =
z

2

z
2

*

Answers:
 

4505

17
1

 

13

17
10 1

 

130

17
 10

 

3757

17 10  

13

17

5. Find the magnitude and angle of these complex numbers.

(a)
  z = 1+ j (b)

  z = 1 j (c)
  z = 3 j3

(d)
  z = 4 + j3 (e)

  
z = 1+ j( ) 1 j( ) (f)

  

z =
1

1+ j

(g)
  

z =
2 j

1+ j3
 (h)

  

z =
2 j

1+ j3

*

Answers:
   

2
4

± 2n

  

1

2 4
  5 2.498

  

1

2

1.713

  

2
2

  

1

2

1.713

   

2
4

± 2n

   

3 2
4

± 2n

6. Find all the distinct solutions to these equations.

(a)
  z

2
= j (b)

  z
3

= j (c)   z
5

= 1

(d)
  z

4
3 = j (e)   z

3
8 = 0
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Answers:
  

1
4

or1
3

4   

1
6

or 1
5

6
or 1

2

  

2 0 or 2
2

3
or 2

2

3   

1
5

or 1
3

5
or 1 or 1

5
or 1

3

5

  
1.333 0.0804 or 1.333 1.651 or 1.333 3.061 or 1.333 1.490

7. Evaluate these exponential functions.

(a)  e
j (b)   e

j / 2 (c)   e
j / 2 (d)   e

j3 / 2

(e)  e
j

+ e
j (f)

  
e

j / 2
+ e

j / 2( )
*

(g)  e + e

(h)
  
e

/ 2
+ e

/ 2( )
*

Answers: 9.621,  j,  -2, -j,  23.184,  0,  -1,  -j

8. If  z = x + jy = Ae
j , find x, y, A and .

(a)   z = 4e
j / 2 (b)   z = 4e

1 j / 2 (c)
  
z = 4e

1 j / 2( ) j2e
1 j / 2( )

(d)
  
z = 10e

j3 / 2( )
3

(e)
  
z = e

j3 / 2( )
3/ 2

Answers:

  
x = 0 , y = 4 , A = 4 , =

2
+ 2n

  
x = 0 , y = 1000 , A = 1000 , =

2
+ 2n

  
x = 0 , y = 8 , A = 8 , =

2
+ 2n

  

x =
1

2
, y =

1

2
, A = 1 , =

4
+ 2n

or

  

x =
1

2
, y =

1

2
, A = 1 , =

5

4
+ 2n

  
x = 0 , y = 10.87 , A = 10.87 , =

2
+ 2n

9. Using MATLAB plot the magnitude and phase of the following complex functions
of the real independent variable  t,  f or  over the range indicated.
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(a)
  
x t( ) = 2e

j4 t
, 1 < t < 1

(b)
  
x t( ) = 2e

1+ j4( )t
, 4 < t < 4

(c)
  

X f( ) =
1

1+ j2 f
, 2 < f < 2

(d)
  

X j( ) =
j

1+ j
, 4 < < 4

Answers:

t
-4 4

|x(t)|

109.1963

t
-4 4

x(t)

-≠

≠

ω
-4 π 4π

|X(jω)|

1

ω
-4 π 4π

X(jω)

- ≠

≠
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f 
-2 2

|X( f )|

1

f 
-2 2

X( f )

-π

π

t
-1 1

|x(t)|
2

t
-1 1

x(t)

-π

π

10. Convert these complex numbers to the polar form  Ae
j  with an angle in the

range, < .

(a)
  1+ j (b)

  3 j2 (c)  j (d)
  j + 1

11. Convert these complex numbers to the rectangular form x + jy .

(a)  e
j (b)   4 45° (c)   3e

2 j
4 (d)

  10e
j
11

4

12. Find the numerical value of z in both the rectangular and polar forms.

(a)
  z = 2e

1+ j / 2
+ 4 j2 (b)

  
z = 1 j( ) 4 + j5( )

2

(c)
  
z = j( )

3

(d)

  

z =
2e

j

1+ j( )
4

(e)

  

z =
2e

j

1 j( )
4

(f)   z = e
1+ j

e
1 j

13. Using MATLAB, plot graphs of the magnitude and phase of the following
functions of the real variable  f over the range indicated.

(a)

  

X f( ) =
10

1+ j
f

100

, 400 < f < 400
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(b)

  

X f( ) =
j10 f

1+ j
f

100

, 400 < f < 400

(c)
  
X f( ) = e j f e j2 f

, 8 < f < 8

(d)

  

X f( ) =
5

1 f 2
+ j

f

4

, 4 < f < 4

(e)

  

X j( ) =
1

j e
j3 / 4( ) j e

j5 / 4( ) j e
j3 / 4( ) j e

j5 / 4( )
, 2 < < 2

(f)

  

X j( ) =
j( )

4

j e
j3 / 4( ) j e

j5 / 4( ) j e
j3 / 4( ) j e

j5 / 4( )
, 2 < < 2

14. (a) Show that the magnitude of the complex function  e
jx , x a real number, is

one, regardless of the value of x.

(b) Find the simplest expression you can for the phase of  e
jx  as a function of x.

(c) Graph the phase of  e
jx  by hand and then write a MATLAB program to

graph the same phase.  The graphs should extend over values of x in the
range,  4 < x < 4 .  If the graphs are different, explain why.


