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Computing platforms that package multiple types of memory, each with their own performance characteristics, are quickly becoming
mainstream. To operate efficiently, heterogeneous memory architectures require new data management solutions that are able to
match the needs of each application with an appropriate type of memory. As the primary generators of memory usage, applications
create a great deal of information that can be useful for guiding memory management, but the community still lacks tools to collect,
organize, and leverage this information effectively. To address this gap, this work introduces a novel software framework that collects
and analyzes object-level information to guide memory tiering. The framework includes tools to monitor the capacity and usage of
individual data objects, routines that aggregate and convert this information into tier recommendations for the host platform, and
mechanisms to enforce these recommendations according to user-selected policies. Moreover, the developed tools and techniques are
fully automatic, work on standard Linux systems, and do not require modification or recompilation of existing software. Using this
framework, this study evaluates and compares the impact of a variety of design choices for memory tiering, including different policies
for prioritizes objects for fast memory tier as well as the frequency and timing of migration events. The results, collected on a modern
Intel® platform with conventional DDR4 SDRAM as well as Intel Optane NVRAM, show that guiding data tiering with object-level
information can enable significant performance and efficiency benefits compared to standard hardware- and software-directed data
tiering strategies for a diverse set of memory-intensive workloads.
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1 INTRODUCTION

In recent years, multiple computing trends, including: the proliferation of AI and other data-driven analyses, multi-tenant
backends, rising CPU core counts, and the relative stagnation of DRAM scaling, have combined to place enormous
strain on memory systems. At the same time, several new media technologies (e.g., high-bandwidth memory [HBM] and
non-volatile memory [NVM]), as well as new memory interconnect options (e.g., Compute Express Link), are bringing
new capabilities that can potentially address the limitations of conventional memory hardware. As a result, many
computing systems are now adopting a heterogeneous mix of memory devices and organizations, with the hope that
the unique benefits and capabilities of the different technologies can be seamlessly combined into a single architecture.

Despite their potential benefits, heterogeneous memories present significant challenges for data management.
Memory has traditionally been viewed as a homogeneous resource, sometimes divided into separate non-uniform
memory access (NUMA) domains, but composed of devices with similar performance and capabilities. As a result,
most modern operating systems (OSes) allocate and distribute physical memory with little or no knowledge of how
applications intend to use these resources. However, to manage heterogeneous memories efficiently, the OS must be
able to match allocation requests to the appropriate technology in consideration of both application requirements and
hardware capabilities.

To address this problem, many recent projects have proposed software frameworks and tools to guide data man-
agement in hybrid memory environments [1, 5, 13, 15, 21–23, 25, 28–30]. Although these efforts have shown that
guided data tiering can be effective, they each have constraints that limit their impact in certain scenarios. For example,
some approaches profile memory usage and conduct tiering at the system level using architectural divisions, such as
pages. While these approaches do not require coordination with application software, they lack insight into the logical
structure of applications and their data and thus may make decisions that are at odds with application intentions.

Others have developed approaches that integrate profiling and tiering capabilities directly with application software,
thereby providing tighter coordination between application behavior and system-level data management. These
approaches often enable better understanding of memory usage because they associate memory profiling information
with logical data features, such as object structures or allocation contexts. In many cases, profiling information associated
with program features can be used to predict memory usage for classes or sets of data with similar features, even if
these data have not been directly profiled. However, these approaches often require additional steps, such as a separate
(profiled) program execution with representative input and/or source code modifications, that impede their usage for
many applications. Moreover, these approaches are typically implemented by linking or compiling new code directly
into a single process runtime, and thus, do not support multi-process workloads. Section 2.1 provides further details on
the advantages and disadvantages of these prior efforts.

This work proposes a new software framework that aims to provide application-guided data tiering without the
constraints and shortcomings of existing solutions. Our approach employs a custom memory allocator, known as
bkmalloc, and a system-wide profiling and management tool called the Memory Auto Tiering (MAT) Daemon, which
together enable automated tiering of program objects. bkmalloc allocates new objects into page-aligned regions of
virtual memory and shares the address and size of each object with the running daemon. In turn, MAT Daemon profiles
the memory usage of each known data object and then uses this information to create and enforce tier recommendations
across the platform.

The proposed approach is fully automatic and does not require offline profiling, modifications, or recompilation of
system or application software. Our Linux-based implementation employs standard system facilities, including perf [18]
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and Linux system calls, to profile and move program data from a user-level daemon. In this work, we demonstrate
the flexibility and effectiveness of this approach by using it to direct data tiering for a variety of memory-intensive
workloads on a modern Intel® platform with two tiers of memory: DDR4 SDRAM and non-volatile Optane DC RAM.

This work makes the following important contributions:

(1) We design and develop a novel software framework for guiding data object tiering on heterogeneous memory
platforms. The proposed approach provides fast and flexible data tiering for single or multi process workloads
without the need for offline profiling or recompilation of target applications. Our entire framework, complete
with documentation, building, and testing scripts, is available open source in our public repository [10].

(2) We evaluate the effectiveness of a range of object tiering policies and parameters, including multiple strategies
for prioritizing program data as well as novel approaches for deciding if and when to migrate program data
between memory tiers. Overall, we find that automated object tiering can significantly improve performance
compared to unguided approaches, but there is no single policy or set of parameter choices that produces the
best performance for all workloads.

(3) Using a set hf memory intensive applications, we compare the best object tiering policies to popular alternative
approaches, including hardware-directed caching and profile guided paging in the OS. While the hardware-
based approach performs best on average, we find that object tiering can achieve similar or (up to 6%) better
performance than caching in some cases, with much less data movement between tiers and without sacrificing
the capacity of fast memory.

(4) We extend our framework with new features that: a) proactively assign program objects to a specific memory
tier based on the context in which they were allocated, and b) interpret and enforce application priorities during
object tiering. We show that these features increase fast-tier utilization significantly and deliver substantial
speedups in both single- and multi-tenant scenarios without obliging applications to be hardware aware.

2 BACKGROUND AND RELATEDWORK

Researchers and engineers across the computing community have proposed a variety of tools and techniques to manage
data efficiently on heterogeneous memory platforms. One common strategy is to exercise the faster, smaller capacity
tier(s) as a hardware-managed cache. For example, Intel®’s Cascade Lake processors include a “Memory Mode” option,
which applies this approachwith DDR4 as a direct-mapped cache to non-volatile OptaneTM DCmemory [9, 16]. Although
hardware-managed caching provides some immediate advantages, such as software-transparency and backwards
compatibility, it is inflexible, often less efficient, and reduces the system’s available capacity.

The alternative strategy of software-directed data tiering uses either the OS itself, or the OS in conjunction with
applications, to assign data into different memory tiers with facilities to migrate data between tiers as needed. Implemen-
tations of this approach are often similar to data management on NUMA platforms [14], with each tier represented as its
own NUMA domain. In many cases, the OS will also expose data tiering controls to user programs through the system
call interface. For example, Linux applications can use the mbind or move_pages system calls to request or require that
a specific range of virtual memory be backed with physical pages from a particular memory tier. These finer-grained
controls allow applications to coordinate tier assignments with allocation and usage patterns, potentially enabling
powerful efficiencies. However, because this approach requires expert knowledge and modifications to program source,
its usage is still limited.
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Table 1. Features of our approach (bkmalloc + MAT Daemon) compared with other software-directed data tiering approaches.

Approach No offline
profiling

No modification,
recompilation of
user applications

No OS
modifications

Supports tiering of logical
program units (objects,

data structures)

Allows user-level
software to define
tiering policy

Supports
multiple
processes

XMem [5],
Servat [28],
RTHMS [23],
Unimem [30],
MemBrain [22],
Laghari [15],
Akram [2]

× × ✓ ✓ ✓ ×

Thermostat [1],
Kim et al. [13],
Choi et al. [3],
Linux tiering
patches [29],
MTM [26]

✓ ✓ × × × ✓

HeMem [25] ✓ ✓ × × ✓ ×
SICM +

MemBrain [21] ✓ × ✓ ✓ ✓ ×
bkmalloc +

MAT Daemon ✓ ✓ ✓ ✓ ✓ ✓

2.1 Automated Approaches for Guiding Data Tiering

Several recent efforts have proposed software tools and techniques that seek to address the limitations of these existing
solutions by automating all or part of the data classification and migration processes. The present work has a similar
goal, but it also has some distinct advantages over these prior efforts. Table 1 summarizes how our approach compares
with other proposed efforts in terms of features that affect the transparency, flexibility, and efficacy of each approach.

Some previous studies developed tools to profile the usage of certain data structures offline, and then use heuristic
models to assign data objects to the appropriate tier [2, 5, 15, 22, 23, 28, 30]. Although these efforts facilitate the
production of high-quality tiering guidance, they still require manual updates to application code and/or recompilation
of the target program to attach recommendations to program data. In contrast, our approach generates and enforces
tier recommendations online in a concurrent process, without requiring any updates to existing applications.

Another set of efforts employed architectural profiling of physical memory regions (often pages) to assist data tiering
in the OS [1, 3, 13, 29]. Although these approaches are completely transparent to user-level software, they also conduct
data tiering with no knowledge of the logical structure of program data. Additionally, due to their dependence on
system-level management, they are less flexible and cannot customize data management for individual applications. On
the contrary, our approach monitors the usage of individual data objects and uses this information to build better profiles
of memory behavior during execution. Moreover, it allows applications to implement their own feedback-directed data
tiering policies in a modular user-level framework.

Some recent efforts have proposed tools and frameworks that address some of the drawbacks of these earlier
approaches. Olson et al. extended MemBrain with functions to analyze memory usage and direct data tiering online and
without the need for offline profiling. However, applications that use it still need to be recompiled [21]. The HeMem
project provides facilities to define data tiering policies in user-level software, but it does not provide any mechanism
for these policies to know or exploit the logical structure of application data [25]. Moreover, both SICM+MemBrain and
HeMem enable guided data tiering by linking their capabilities into a single target process. Hence, these approaches
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Fig. 1. Design overview of our approach.

can only support one process at a time. By combining allocator instrumentation with a separate daemon process, our
approach is the first to support transparent and flexible data object tiering for both single- and multi-process workloads.

3 FLEXIBLE AND EFFECTIVE OBJECT TIERING FOR HETEROGENEOUS MEMORY SYSTEMS

3.1 Design Overview

Figure 1 depicts the main components of our approach, which primarily consists of two new pieces of software:

(1) The bkmalloc allocator provides two essential capabilities: (1) page-aligned allocations for objects larger than
a certain size and (2) instrumentation that records when an application allocates or frees an object. It is also
capable of dictating the tier to which an object is initially allocated through standard operating system calls.

(2) The MAT Daemon runs alongside the applications and conducts object tiering through a series of complementary
activities, including (1) monitoring and structuring profiles of object allocation and usage, (2) automated heuristics
to prioritize objects for placement in fast memory, and (3) mechanisms to enforce tier recommendations when a
particular event occurs.

3.2 Tracking Object Creation and Removal

On initialization, applications that will participate in guided object tiering dynamically link the bkmalloc allocator
(marked with 1 in Figure 1).1 bkmalloc is a general-purpose malloc implementation with capabilities similar to other

1In our Linux-based implementation, bkmalloc is built and distributed as a shared library (.so) file. Applications use the LD_PRELOAD environment
variable to load bkmalloc in place of the standard system allocator.
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modern allocators, such as the GNU allocator or jemalloc, but it includes additional features to support object tiering
with MAT Daemon. When the application requests an allocation larger than a certain size, bkmalloc allocates the object
in a page-aligned region of virtual memory and notifies MAT Daemon of the new object’s address and size. Similarly,
bkmalloc will send a corresponding notification whenever the application frees an object from its heap.

In our current implementation, the size threshold for individually tracked data objects is 4 KB, which matches the
page size on our platform. Objects smaller than 4 KB are slot allocated into a set of buckets composed of page-aligned
blocks, in which the size of each block depends on the size of the allocation. bkmalloc also notifies MAT Daemon of
each active block, allowing the framework to manage data associated with smaller program objects in block-size units.

MAT Daemon receives object notifications through a first-in-first-out (FIFO) message queue 2 . To minimize the
execution time of this communication, insertions into the queue are non-blocking except in the rare event that the
queue is full. Additionally, to keep the latency of these operations as low as possible, the daemon polls the queue
continuously from a separate thread, which is ideally pinned to its own, otherwise unused, computing core.

3.2.1 Handling Ephemeral Objects. For many applications, a significant portion (in some cases, the vast majority) of
object allocations have very short lives and are quickly replaced in the address space by new allocations. Such ephemeral
objects are not very consequential for data tiering because they typically consume a relatively small portion of capacity,
which is often captured in processor caches. However, record keeping for ephemeral objects can be problematic for our
approach because it can delay the collection of profiles for longer-lived objects with more impactful tiering consequences.
Thus, rather than create and destroy object records immediately as new allocations are seen, our approach buffers the
allocation events until the end of the current profiling interval. If MAT Daemon then receives a de-allocation event that
corresponds to a buffered allocation event before the end of the interval, it simply removes that allocation from its
buffer. In this way, our approach avoids record keeping for most ephemeral program objects.

3.2.2 Split Records for Large Objects. During our initial testing, we found that some applications allocate a small
number of very large objects that comprise much or most of their overall memory capacity. To enable more precise
monitoring and more fine-grained control over the placement of data within such large allocations, MAT Daemon
provides the option to split objects that are larger than a certain size into multiple records. Specifically, this option
splits large allocations into ⌈𝑛/𝑠⌉ records, where 𝑛 is the size of the original allocation, and 𝑠 is the given split size. All
split records, except possibly the last record by address order, cover a range of addresses equal to the split size.

3.3 Monitoring the Memory Usage of Active Objects

To understand how objects are using memory, our approach efficiently monitors memory usage events through
architectural sampling and system-level instrumentation. Specifically, it integrates MAT Daemon with two facilities
that are commonly available on modern Linux distributions: (1) the perf subsystem for architectural sampling [18] and
(2) BPF [7], which is a compiler framework and tool set that allow user programs to insert custom instrumentation into
a running kernel safely and dynamically without modifying kernel source code. Upon initialization, MAT Daemon
configures perf to begin sampling memory reads that result in a miss in the processor’s last level cache (LLC) 3 . It
then invokes BPF to install system-level instrumentation that intercepts the LLC miss events generated by perf and
then transmits them to MAT Daemon through a shared ring buffer 4 .

Next, as MAT Daemon receives allocation events from the attached applications, it creates records for the active
heap objects 5 . Each record contains the starting virtual address and size of each object as well as a set of fields that
can be used to aggregate and store profile information related to the usage of the object in memory. In our current
Manuscript submitted to ACM
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implementation, these fields record the creation time of the object, the time corresponding to the most recent sampled
LLC miss, as well as the number of LLC misses scaled and normalized over a configurable time interval.

3.3.1 Unified System and Application Guidance. One of the key advantages of our design is that it allows MAT Daemon
to monitor and leverage allocation behavior as well as system-level events to direct memory tiering. Moreover, although
our current implementation only uses BPF to record samples of LLC miss events, this approach could easily be extended
to collect and incorporate other types of system-level guidance to further enhance data tiering. Indeed, earlier iterations
of this work used BPF to monitor page fault and page release events to track the physical memory capacity of every
data object. However, we disabled this feature for our evaluation because we found that the additional instrumentation
can cause significant execution time overheads (up to 10% in our testing) without any discernible benefit compared
with simply using the allocated size of each object as an estimate of its capacity utilization.

Similarly, BPF instrumentation could also be used to monitor the memory usage of kernel objects (e.g., file and
network buffers) that are not mapped into any user process. Recent work has shown that kernel data usage is a significant
and important factor in data tiering for some applications [12]. Although support for this feature is outside the scope of
this study, we plan to investigate policies that can monitor and control the placement of kernel and application data
simultaneously in future work.

3.4 Profile-Guided Object Tiering with MAT Daemon

To support profile-guided object tiering, MAT Daemon spawns a separate thread that operates on a timer-driven signal.
At each timer tick, this thread invokes a set of routines to (1) aggregate the most recent profile information with
information collected during prior intervals (aggregation routine) (2) calculate object priorities for placement in the
smaller, faster memory (prioritization routine) (3) determine whether or not to enforce new tier assignments for the
active objects at this time (trigger routine), and, if necessary, (4) convert the object priorities into object-tier assignments
and migrate certain objects to enforce the new tier assignments (enforcement routine) 6 .

Because our design is modular, users can create custom tiering policies by selecting from a set of existing routines or
by providing their own implementations of each of the above functionalities. For this work, we use this modular design
to evaluate and compare the effectiveness of a variety of choices and policies for object tiering. Next, we describe the
set of routines we implemented for this study.

3.4.1 Profile Aggregation. The goal of the aggregation routine is to combine profile information from the most recent
interval with information collected during prior intervals. For some statistics, such as the address, size, creation time,
and most recent access time, aggregation across intervals is unnecessary. Estimating the relative access rates of each
object is more complicated because the frequency with which a program accesses a particular data object may shift
substantially over time. Our approach computes a weighted average of the number of sampled accesses for each object
during the most recent interval with the average from earlier intervals. Specifically, we use the following formula:

𝜏𝑛+1 = 𝛼 ∗ 𝑡𝑛 + (1 − 𝛼) ∗ 𝜏𝑛, (1)

where 𝜏𝑛+1 is the predicted number of sampled LLC misses for the object for the next program interval, 𝑡𝑛 is the actual
number of sampled LLC misses for the object during interval 𝑛, and 𝛼 is a parameter ranging from 0.0 to 1.0. For this
work, we selected an 𝛼 value of 0.1 after a brief tuning process, which is described in Section 4.5.1.
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3.4.2 Calculating Object Priorities. The prioritization routine computes an ordering of all active objects that describes
their priority for placement within the fast memory tier. Our study evaluates three prioritization routines:

(1) First-in-first-out (FIFO): Priority is based on the age of the objects. Older objects have lower priority.
(2) Least recently used (LRU): Priority is based on time since last access. The LRU objects have lower priority.
(3) Accesses per byte (APB): Priority is based on the weighted average of accesses per byte of capacity. Objects

with lower APB have lower priority.

3.4.3 Deciding When to Migrate Data Objects. Similar to other software-directed tiering approaches, our approach
migrates program data from one tier to another by remapping virtual memory to a different set of physical pages.
Unfortunately, this is often an expensive operation on modern computing systems. Before moving any program data, the
OS must interrupt and suspend application threads to prevent inconsistencies caused by data races. There are additional
costs for actually copying data from one tier to another as well as keeping page tables (and TLBs) synchronized with
upper-level software. Thus, while object priorities may shift from interval to interval, frequently migrating program
data to match these priorities can be counterproductive.

To control migration costs, MAT Daemon employs a trigger routine to decide when it should migrate program data
to match object priorities. Our study evaluates three approaches for triggering the reassignment of objects to tiers:

(1) Time Trigger: Reassign every 𝑛 timer ticks.
(2) LLC Misses Per Instruction (LLCMPI) Trigger: Reassign when the difference between the LLCMPI of the

most recent interval and the average LLCMPI of the previous ten intervals, and normalized by the average
LLCMPI, exceeds a certain threshold.

(3) Allocation Trigger: Reassign when 𝑛 bytes have been allocated since the previous re-assignment.

Thus, the Time Trigger enables direct control over the rate of migration by limiting the number of migration events
over time. In contrast, the LLCMPI and Allocation Triggers aim to detect events that indicate application memory usage
is changing and only allow data migration to occur after shifting resource utilization has become evident.

3.4.4 Converting Priorities to Tier Assignments: When the trigger routine indicates that it is ready to migrate program
data, MATDaemonwill invoke the enforcement routine to create and enforce new object-tier assignments. To implement
this routine on our Intel® Linux platform, we configure the OS to view each tier of memory as a distinct (memory-only)
NUMA node in a single physical address space.2 This way, user software can use the standard NUMA API and related
system calls to assign and remap virtual memory to a specific type of memory 7 .

The enforcement routine then partitions the active objects into different sets that correspond to each memory tier.
Specifically, it traverses the live objects in the order of their priorities and adds objects to the fast memory set until
the aggregate size of these objects is greater than the capacity limit of the fast tier. All the remaining objects are then
assigned to the slow memory set. To move program data, the daemon invokes the move_pages system call to (1) demote
objects that are currently in the fast tier but belong in the slow memory set and then (2) promote objects that are
currently in the slow tier but belong in the fast memory set.

3.5 Proactive Object Tier Assignments with Allocation Sites

As with any profile-guided memory tiering approach, our approach has significant costs associated with: 1) executing
in a suboptimal tiering configuration as the runtime collects memory usage information, and 2) migrating program

2Additional details and an example of this procedure are available at [27].
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data if and when the runtime determines it should be reassigned to a new tier. To limit these costs, we have extended
our reactive tiering framework with features that proactively assign certain data objects to a specific tier based on
the context from which the data are allocated. Our approach relies on the observation, described and validated in
prior works [6, 21, 22, 28], that data allocated from the same allocation site tend to have similar usage patterns. In this
context, an allocation site refers to the address of the allocating instruction (e.g., malloc or new) with some amount
of call path context. By aggregating the profiles of objects originating from the same site, the runtime may be able to
predict whether an object should be assigned to the fast or slow memory at the time it is allocated by only knowing the
site from which it originates.

To implement this approach, we extended bkmalloc to record the call path context of every allocation larger than the
object tracking threshold of 4 KB. Specifically, we use the Linux backtrace facility [19] to record up to 16 addresses of
call path context leading to the allocation instruction. Next, the allocator hashes these addresses together into a 64-bit
site ID using a simple multiplicative hash and then sends the site ID along with the new object notification message to
the MAT Daemon. While our chosen hash procedure theoretically permits collisions of distinct call path contexts, such
collisions are very unlikely to occur, and we have confirmed that there are no collisions among the allocation contexts
reached in our evaluation workloads.

The MAT Daemon proceeds as described before, profiling and periodically assigning active objects to a specific
memory tier based on the current object tiering policy. However, it may now assign each new object directly to a certain
tier based on the tier assignments of objects created at the same site. Specifically, if the proportion of a site’s objects
that are assigned to the same tier exceeds a certain threshold, then the daemon will send a message back to the allocator
indicating that new objects from this site should be proactively assigned to that same tier. Given this information, the
allocator can then use standard Linux facilities (e.g., mmap and mbind) to assign new allocations from that site into pages
corresponding to the appropriate memory tier.

4 EXPERIMENTAL SETUP

4.1 Platform Details

Our evaluation platform contains a single Intel® Xeon® Gold 6246R CPU (code named Cascade Lake or CLX) with 16
physical compute cores hyperthreaded to 32 logical cores. The cores all run a 3.4 GHz clock and share a 35.75 MB L3
cache. The processor includes a memory controller that services requests to both DDR4 SDRAM as well as OptaneTM

DC persistent memory through a common memory bus. The bus is divided into six identical channels, each of which
is connected to one 32 GB, 2933 MT/s, DDR4 DIMM and one 128 GB, 2666 MT/s, OptaneTM DC module. Thus, the
system contains a total of 192 GB of DDR4 SDRAM and 768 GB of OptaneTM DC persistent memory. Data reads from
the non-volatile memory require 2× to 3× longer latencies, and sustain only 30%–40% of the bandwidth of the DDR4
memory. Although latency for writes is similar for both types of memory, the DDR4 also supports 5×–10× more write
bandwidth than the OptaneTM memory [9]. All experiments use Debian 11 with Linux as the base operating system.

4.2 Workloads

Our evaluation employs a variety of applications that we selected based on their potential to stress cache and memory
performance on our platform. Table 2 describes our selected benchmarks with the mechanism that is used to parallelize
each workload. Several of these applications, namely LULESH, AMG, SNAP, and QMCPACK, come from the CORAL [17]
suite, which is a set of high-performance computing applications developed and maintained by the US Department
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Table 2. Benchmark descriptions with parallelization method.

App Description Parallel

LULESH Hydrodynamics stencil calculation, very little
communication between computational units. OpenMP

AMG Parallel algebraic multigrid solver for linear sys-
tems on unstructured grids. OpenMP

SNAP Mimics the computational needs of PARTISN, a
Boltzmann transport equation solver. OpenMP

QMCPACK Quantum Monte Carlo simulation of the elec-
tronic structure of atoms, molecules. OpenMP

WarpX Highly optimized and parallelized advanced elec-
tromagnetic Particle-In-Cell computation. OpenMP

IdenProf DenseNet-121 (dense neural network) training
for a large set of images of professionals.

Thread
Pool

Graph500 Search and find the shortest path to a set of ran-
dom keys in a large undirected graph. MPI

Table 3. Benchmark inputs with default performance. For each input the columns show the number of software threads, the benchmark
arguments, and the execution time, peak resident set size (GB), and average memory bandwidth (GB/s) of the default configuration
(system allocator with DRAM-preferred first-touch policy on an otherwise idle machine with 32 logical cores).

App Input Threads Input Arguments Time (s) GB GB/s

LULESH
small 32 -s 300 -i 12 -r 11 -b 0 -c 64 -p 307.7 23.17 87.68
full 32 -s 850 -i 3 -r 11 -b 0 -c 64 -p 16,205 573.21 8.47

shared 16 -s 500 -i 3 -r 11 -b 0 -c 64 -p 461.9 119.30 75.1

AMG
small 32 -problem 2 -n 300 300 300 297.86 46.41 84.60
full 32 -problem 2 -n 700 700 700 9,326 587.39 33.6

shared 16 -problem 2 -n 400 400 400 787.11 104.39 77.62

SNAP
small 32 nx=320, ny=60, nz=46 297.20 27.18 42.05
full 32 nx=5120, ny=60, nz=46 14,757 424.98 15.96

shared 16 nx=512, ny=60, nz=46 957.26 43.28 25.3

QMCPACK
small 32 NiO S64, VMC method, 40 walkers 256.63 19.40 20.99
full 32 NiO S256, VMC method, 40 walkers 12,948 353.22 21.24

shared 16 NiO S128, VMC method, 40 walkers 539.63 51.29 24.53

WarpX
small 32 max_step=20, n_cell=256 256 4096 289.56 50.23 29.59
full 32 max_step=20, n_cell=1024 1024 4096 15,267 425.38 5.44

shared 16 max_step=20, n_cell=512 512 4096 1,347.31 111.02 24.01

IdenProf
small 32 num_objects=10 batch_size=256 740.84 37.30 36.85
full 32 num_objects=10 batch_size=2575 1,448 306.68 9.62

shared 16 num_objects=10 batch_size=512 905.1 66.09 29.97

Graph5003 small 32 graph500_reference_bss, scale=24 258.88 9.10 44.26
shared 16 graph500_reference_bss, scale=27 2,880.02 52.84 21.26

of Energy. The other applications represent important and widely used computations from machine learning, graph
search, and scientific computing domains.

Table 3 presents the inputs we use to run each benchmark and some basic performance characteristics with our
default configuration. We evaluated our approach with three input sizes called small, full, and shared. The full inputs
are designed to take advantage of the large capacity NVM on our platform and thus generate data outlays beyond

3We omit the full input size for Graph500 because Graph500 inputs that are large enough to generate larger than DRAM memory capacities always failed
with a segmentation fault on our platform, even in the default configuration.

Manuscript submitted to ACM



Flexible and Effective Object Tiering for Heterogeneous Memory Systems 11

the available DRAM. While the full size workloads generate high rates of memory access, their observed bandwidths
are relatively low because a substantial portion of their hot data are on the slower memory devices in the default
configuration. Moreover, they often require several hours of execution time for each experimental run. Hence, for faster
evaluation and for comparisons with an ideal everything-in-DRAM configuration, we also constructed a smaller inputs
that are able to complete their execution within a few minutes and fit entirely within the DRAM tier. However, these
“small” inputs still require several to dozens of GBs of memory capacity and generate memory bandwidth well beyond
what is sustainable by the NVM tier. To model scenarios where multiple applications share memory resources, we also
constructed the shared inputs. These inputs use only half the number of software threads as there are logical cores
on our platform and have memory outlays that fit entirely within the DRAM tier. In this way, the shared inputs can
be configured to execute concurrently with another application without sharing computing resources, but may still
contend for fast memory resources if the combined capacity of the concurrent tasks exceeds that of the upper tier.

4.3 Operating System Details

Experiments with the small input sizes were run with Linux kernel version 5.14. To control and generate contention for
capacity in the fast memory tier with relatively small workloads, we extended this kernel with facilities to constrain the
amount of DRAM available to each application. Specifically, we added an option to the memory control group (cgroups)
interface to limit the amount of physical memory that processes in the group can allocate and keep resident in fast
memory at any given point in time. Thus, if a process requests a page from the faster tier when the specified limit has
been reached, the kernel will supply a page from the slower memory tier or fallback to page reclaim if no other memory
is available. In addition to allowing relatively fast evaluation of many tiering configurations, this approach also enables
easy and direct control over the amount of fast memory available as well as comparison with an ideal configuration in
which the size of the faster tier is unconstrained.

To test our approach against alternative tiering strategies at full system scale, we deployed and ran the full size
inputs on Linux kernel version 5.15 with Intel®’s tiering patches [29] patches applied. While our approach does not
require any functionalities included with these patches, the results with the full inputs are affected by some page
migration optimizations included in this patch. Specifically, the patch significantly improves page migration throughput
by batching certain operations (e.g., TLB shootdowns) when migrating application pages from one tier to another.4

Since we expect these optimizations will likely be included in future kernels that support software-based tiering, we
left them enabled for runs with our own approach.

4.4 Compilation and Parallelization

Aside from IdenProf, which relies on several Python-based libraries, including TensorFlow and numpy, all of the selected
benchmarks are written entirely in popular, statically compiled languages, such as C, C++, and Fortran. We compiled
these static language applications and the static components of IdenProf by using the GNU Compiler Collection v.10.2.1
with default optimization settings. We execute IdenProf using the standard CPython implementation of Python v.3.7.6.

Each benchmark provides amethod to parallelize its execution over multiple concurrent threads or processes. LULESH,
AMG, SNAP, QMCPACK, and WarpX employ OpenMP to distribute their workloads across multiple concurrent threads.
Graph500 achieves a similar effect with multiple separate processes by using MPI. To enable these features, we linked

4In experiments with the LULESH workload, the page migration throughput improved by about 2.8× with these optimizations enabled.
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each application with the standard OpenMP (v.4.5) or MPI runtime (MPICH v.3.4.1-4) during compilation. IdenProf
executes as a single process but uses a pool of threads to parallelize the DenseNet-121 training procedure.

Our tiering experiments use numactl to restrict the application to 30 logical cores and reserve the remaining two
cores (which correspond to the same physical core) for the MAT Daemon. In comparison to a configuration that
creates 32 threads for the application alone, we found that using two fewer threads to avoid scheduling conflicts with
MAT Daemon enabled better overall performance for our benchmarks. For all benchmarks except IdenProf, which
automatically adjusts the number of threads in its thread pool based on the available computing resources, we also
employ the relevant OpenMP or MPI options to set the number of threads to match the number of available cores.

4.5 Common Experimental Configuration

For each experimental configuration, we report overhead and performance results as the mean execution time of
five experimental runs relative to the default configuration. To estimate and report variability in these results, we
also compute the 95% confidence intervals for the difference between the means of the experimental and default
configurations, as described in Georges et al. [8]. These intervals are plotted as error bars around the sample means
in the relevant figures. While we have computed and plotted these error bars for all of our results, variability is too
low for the bars to be visible in some cases. To reduce sources of variability between runs, all experiments execute in
isolation on an otherwise idle machine. An automated script also clears out the page cache and disables transparent
huge pages for the application process prior to each experimental run.

4.5.1 Common Profiling and Tiering Parameters. To monitor memory access behavior, MAT Daemon configures perf to
sample the MEM_LOAD_L3_MISS_RETIRED.LOCAL_DRAM and MEM_LOAD_UOPS_RETIRED.LOCAL_PMM events with a sam-
pling period of 4,096. We selected this sampling period because we found that it is sufficient to generate tens of thousands
of samples per second with only negligible (< 1%) execution time costs for our workloads. The LLCMPI trigger policy
also uses perf to compute the number of LLC misses per instruction as the ratio of the MEM_LOAD_RETIRED.L3_MISS
and INST_RETIRED.ALL hardware counters.

We experimented with several timer interval lengths for operating the profile collection and aggregation capabilities
in MAT Daemon, including 0.1, 0.2, 1.0, 2.0, and 10 seconds. We found no difference in the execution time overhead
of the concurrent workload with each interval. However, values less than 2 seconds produced more irregular profiles
because the aggregation and analysis procedures often required longer than the profile period. Hence, all of our profiling
and profile-guided configurations operate the timer-driven thread in MAT Daemon with a 2-second interval.

Using this 2-second interval, we also tried a number of 𝛼 values for aggregating the profiles of object access counts
(see Equation 1 in Section 3.4.1), including 0.01, 0.1, 0.5, 0.9, and 1.0. We found that 0.1 provided relatively high accuracy
when predicting usage in the next program interval while still being responsive to shifts in program behavior. Thus,
experiments that use this capability always set 𝛼 to 0.1.

We configured MAT Daemon to always split objects larger than 64 MB into multiple records (Section 3.2.2). In early
testing, we found that 64 MB is small enough to enable sufficient control over the placement of data within large
objects without increasing the execution time overhead of profiling. Lastly, to leave a portion of fast memory for future
allocations, each tier reassignment only fills the fast memory up to 90% of its available capacity. In preliminary testing,
we found this approach produced better overall performance than configurations that use 50%, 80%, or 100% of the
available DRAM at each migration event.
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Fig. 2. Execution time overhead of object profiling relative to
default (32-cores, system allocator) (lower is better).
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5 EVALUATION

5.1 Online Profiling Overhead

Let us first consider the execution time and memory overhead of object profiling with bkmalloc and MAT Daemon. For
this evaluation, we compare execution with the standard malloc implementation from glibc (v.2.3.1) against execution
with our custom allocator and profiling tools. To avoid performance effects related to data tiering, the experiments in
this subsection only use the small input sizes and assign all program data to the DRAM tier. They do not include any of
the object tiering or migration capabilities described in Section 3.4.

5.1.1 Execution Time Overhead. Figure 2 shows the execution time of each benchmark when run with bkmalloc
alone and when run with bkmalloc and MAT Daemon collecting object usage statistics throughout the run. Since
both bkmalloc alone and bkmalloc + MAT Daemon restrict the application to use only 30 logical cores (as discussed in
Section 4.4), we also plot the execution time of the default system allocator with the application restricted to only 30
logical cores to isolate this effect. All results are relative to the execution time of a default (32 core) configuration with
the standard system allocator (lower is better).

Thus, limiting the workload to only 30 logical cores has very little impact on the performance of these benchmarks.
The worst case of Graph500 slows down by about 6%, but in some cases, performance slightly improves when computing
resources are restricted, perhaps due to less communication overhead than the default configuration. Similarly, bkmalloc
has negligible average impact but may have some impact on the performance of individual benchmarks. Since bkmalloc
changes the layout of data in the heap, it may also affect the efficiency of processor caches. In some cases (e.g., LULESH
and IdenProf), these effects do cause some slowdown, but in others (e.g., SNAP and WarpX), they actually improve
performance compared to the default allocator. Across all seven benchmarks, these effects mostly cancel each other
out and result in a slight (< 1%) average improvement over the default allocator. Additionally, we find that adding
object profiling with MAT Daemon has only a small additional cost compared to bkmalloc alone. In the worst case of
QMCPACK, MAT Daemon adds an extra 5.8% of execution time overhead, whereas the average execution time cost of
object profiling is only 2.8%.

5.1.2 Memory Capacity Overhead. Next, let us examine the memory capacity overhead of our approach. Figure 3 shows
the peak memory usage of each workload with the default (30 cores), bkmalloc alone, and bkmalloc + MAT Daemon

configurations relative to the default (32 core) configuration (lower is better). Similar to execution time, bkmalloc has a
Manuscript submitted to ACM
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Table 4. Object usage statistics: For each benchmark, the columns show the peak number of active object records, the number of
object records created per second, the number of MBs allocated per second, the average lifetime of each tracked object (in seconds),
and the portion of LLC miss events that are associated with some object during profiling.

Small inputs (30 cores)
Application Peak OR OR/sec MB/sec Life (s) LLC
LULESH 346 5.26 235.90 35.96 0.951
AMG 997 8.93 428.21 67.26 0.956
SNAP 628 2.12 93.17 290.11 0.997

QMCPACK 191,706 747.01 79.57 243.77 0.99
WarpX 37,130 475.87 577.00 25.30 0.678

Graph500 1,125 7.65 47.76 115.74 0.999
IdenProf 3,981 44.44 1,508.35 77.03 0.367

mixed impact on the memory capacity of our workloads. On average, these effects cancel each other out, and there is
essentially no difference between the peak capacity utilization of the default and bkmalloc allocators. Additionally,
the MAT Daemon uses a small amount of memory storage to create and maintain profiles of each active data object.
Specifically, our current implementation requires only 136 bytes of memory for each object record and 152 bytes for
each process record. As expected, we find that this additional storage has little to no impact on the peak capacity
utilization of our benchmark set.

5.2 Object Usage Characteristics

Next, let us examine how our selected workloads allocate and use objects in memory. Since these experiments depend on
execution rates and timing, we omit results for the shared and full inputs, which may be impacted by thread restrictions
and tiering effects, and only present results for the small inputs with all objects assigned to DRAM.

Table 4 presents object statistics for each application with its small input. Note that, since these statistics only include
object records, they do not include ephemeral objects, and allocations larger than 64 MB are split into multiple records
(Sections 3.2.1 and 3.2.2). Thus, for these workloads, the peak number of object records ranges from only a few hundred
to over 190,000. The peak number of records is relatively low because the vast majority of allocation events are for
small and/or ephemeral objects, which are never converted to object records. For the same reason, the average lifetime
of each record is relatively high, at least 21 seconds for all applications. This property is important because longer
lifetimes enable our tools to collect more information about the usage of each object.

The column on the right shows the portion of memory read events (i.e., LLC misses) that are associated with an
active object record during execution. Thus, for most benchmarks, the vast majority (> 95%) of sampled LLC misses
correspond to an active object record. However, for WarpX and IdenProf, many of the sampled accesses correspond
to addresses that are not part of any object record. This result indicates that a significant portion of their memory
bandwidth corresponds to non-heap data (e.g., stack or kernel objects) or possibly ephemeral heap objects. Despite this
result, we found that our approach can still be effective for these workloads because it identifies and moves a large
proportion of cold application data to slower memory, thereby freeing up fast memory for untracked application data.

5.3 Comparison of Object Tiering Policies

Our next set of experiments aims to identify the best performing tiering policies for each workload under different
capacity constraints. In order to compare a larger number of policies and configurations, these experiments only test
the small inputs and use the custom control group interface (described in Section 4.2) to control the capacity of the fast
Manuscript submitted to ACM
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memory tier. Specifically, these experiments limit the amount of DRAM for each workload to be 12.5%, 25%, and 50% of
the same workload’s peak capacity utilization in its default (32 core) configuration. Additionally, these experiments,
along with the first set of full scale experiments in Section 5.4, only evaluate reactive object tiering, and do not employ
the proactive approach described in Section 3.5.

5.3.1 Selection of Trigger Thresholds. Each of the strategies that our framework uses to decide when to migrate program
data includes a threshold value that can affect performance in different scenarios. To limit the set of configurations
in our comparisons, we conducted some preliminary experiments to identify reasonable threshold values for each
approach. For these initial tests, we limited the capacity available in the DRAM tier to 25% of the application’s peak
utilization and configured MAT Daemon to use the APB object prioritization policy. We then executed each workload
once with a range of options for each trigger policy and selected the value that provided the best performance for our
full set of experiments. The range of options we evaluated with each trigger policy are shown below with the value we
selected for our experiments emphasized and in bold.

• Time trigger (number of profiling intervals, each interval is 2 seconds): 1, 2, 5, 10, and 100.
• LLCMPI trigger (normalized difference between LLCMPI of the current interval and average LLCMPI of prior
intervals): 0.5, 1, 2, 5, 10, 20, 30, 40, and 50.

• Allocation trigger (MBs allocated): 512; 1,024; 2,048; and 4096.

5.3.2 Object Tiering Performance. Figure 4 presents the performance of each object prioritization policy with each
migration trigger policy when the fast memory capacity is limited to 12.5%, 25%, and 50% of the application’s peak
capacity. For eachworkload and capacity limit, we also plot the performance of an unguided, first touch (FT) configuration.
Similar to the standard Linux policy for non-uniform memories, FT simply faults data into the DRAM tier until it is
full and then assigns new data to the NVM tier. Note also that, aside from the DRAM capacity limit, FT is identical
to default (32 core) execution. All results are shown in execution time relative to the default configuration with all
program data assigned to the DRAM tier (lower is better).

The results show that, for most workloads and capacity limits, there is at least one object tiering policy that
significantly outperforms the unguided FT configuration. However, in a few cases (e.g., LULESH-50%, AMG-12.5%, and
Graph500-50%), profile-guided object tiering provides no benefit or can even degrade performance vs. an unguided
approach. On further analysis, we found that although our approach does produce slightly more efficient data-tier
assignments for these cases, the additional profiling and migration costs imposed by our tools negate their benefits.
Despite these cases, our approach still produces substantial performance gains on average compared to unguided FT.
The best configurations overall use the allocation trigger with either the LRU or APB object prioritization policies and
achieve speedups of 1.4×, 1.6×, and 1.35× over FT with the 12.5%, 25%, and 50% capacity limits, respectively.

Comparing the effectiveness of the tiering strategies allows us to make several additional observations:

(1) In general, the LRU and APB object prioritization strategies are more effective than FIFO. Intuitively, this result
makes sense because past and recent usage of a particular data object are more likely to predict future usage
than the age of the data. However, for workloads such as IdenProf, which creates new data more quickly than
the other benchmarks, FIFO can be effective because it does not need to wait to build a usage profile to identify
hot program data.
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Fig. 4. Performance (execution time) of guided object tiering with varying amounts of capacity available in the faster DDR4 memory
tier. All results are shown relative to the default (32 core) configuration with all program data allocated to the DDR4 tier (lower is
better). The DDR4 capacities shown along the 𝑥 axis are calculated as a percentage of the peak resident set size during execution with
the default configuration.

(2) On average, the time and allocation trigger policies are more effective than the LLCMPI trigger. Although the
LLCMPI policy can be effective when tuned for individual workloads, we found that each individual threshold
value we tested was significantly worse than the best threshold for at least some benchmarks.

(3) Although the results show that the allocation trigger with either the LRU or APB object prioritization policies work
best on average, there is no single policy that works best for all workloads and capacities. For instance, although
the allocation trigger effectively identifies the beginning of new program phases for SNAP and QMCPACK, this
policy is too conservative for Graph500 and results in worse performance due to cold and stale data remaining in
the fast memory tier throughout much of the execution.

Overall, the results suggest that a single approach is unlikely to work best for all workloads and architectures.
However, by providing tools and controls that allow user-level software to customize object tiering policies quickly and
easily, this work can enable applications to adapt to various hardware capabilities and constraints more efficiently.
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Table 5. Configurations used in the full scale evaluation.

Name Description

First Touch (FT) DRAM and NVM available to software in a flat address space. The OS assigns new
allocations to DRAM until it is full and then assigns new data to NVM.

Memory Mode Hardware exercises DRAM as a large last level cache to program data, which is stored in
NVM. DRAM capacity is not visible to upper-level software.

Linux Tiering
Patches

(LTP) [29]

Similar to FT, but uses page-based profiling to promote hot pages to DRAM periodically.
Algorithm and interface extend the standard NUMA balancing facility, with all parameters
set to default values (i.e., rate_limit_mbps is set to 65536 and wake_up_kswapd_early
and scan_demoted are disabled).

bkmalloc+MD
avg-best

Employs the best performing bkmalloc+MD configuration on average (across all six
workloads) for the small input sizes with the 50% capacity limit (i.e., Allocation Trigger,
APB object priority).

bkmalloc+MD
indv-best

Employs the best performing bkmalloc+MD configuration for each individual workload
with the small input and 50% capacity limit.

5.4 Object Tiering with a Single Application at Full System Scale

Next, let us consider the performance of guided object tiering with the full size workloads. In addition to evaluating our
approach at real system scale, these experiments allow for direct comparison with other system level tiering strategies,
including hardware-directed caching and profile guided paging in the OS. The full set of configurations we compare for
these experiments is described in Table 5. There are a few other important notes: 1) For FT, Memory Mode, and LTP,
the application is configured to use the default system allocator and all 32 logical computing cores, 2) bkmalloc+MD

avg-best and bkmalloc+MD indv-best use the results for the small workloads with the 50% capacity limit because this
ratio most closely matched the ratio of each application’s peak RSS to fast memory capacity on our server platform,
3) we ran indv-best for only two applications, IdenProf and WarpX, because these were the only workloads with a
configuration that performed significantly better (i.e., outside the 95% confidence interval) than avg-best with the small
input, and 4) to account for the larger capacities of the full scale workloads, we tested each application with 1 GB and 10
GB, and 100 GB allocation trigger thresholds and report performance of the best threshold. Hence, the avg-best results
use a 1 GB threshold for QMCPACK and 10 GB thresholds for every other workload.

Figure 5 shows the execution times of the full size workloads with the Memory Mode, LTP, bkmalloc+MD avg-best,
and bkmalloc+MD indv-best configurations, relative to the execution times of the FT configuration. We find that the
automated tiering strategies significantly improve performance over the static FT approach in almost every case. While
Memory Mode performs best on average, there are cases where our approach performs similarly (e.g., LULESH and
IdenProf) or outperforms (by up to 6% for AMG) hardware-directed caching. In contrast to Memory Mode, our approach
achieves high performance in these cases without requiring hard-wired architectural features and without sacrificing
the capacity of the fast memory devices. It is also important to note that we selected full size inputs that do not exceed
the capacity of the NVM devices so that we could directly compare our approach to Memory Mode. Larger inputs that
take advantage of the additional capacity available in the software-based tiering configurations would almost certainly
perform much worse (or crash) in Memory Mode.

Moreover, our approach can potentially operate more efficiently than Memory Mode, in some cases. Consider
Figure 6, which shows the total memory read on our platform (including data transfers between memory tiers) during
execution of each workload with each tiering configuration. All results are shown relative to the total memory read
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Fig. 5. Performance (execution time) of different tiering configu-
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Fig. 6. Memory read bandwidth over the entire run for different
tiering configurations with full inputs (lower is better).

during execution with the default FT configuration. While SNAP is a significant outlier,5 most applications generate
much more memory bandwidth with Memory Mode than with the software-based tiering configurations. On average,
workloads aside from SNAP generate 23% more memory traffic in Memory Mode than with bkmalloc+MD avg-best.
Further, since operational and data movement costs are the dominant factor in memory power consumption [20, 24],
these results show there is significant potential for guided object tiering to reduce energy costs in memory, while still
achieving the best possible performance, for most workloads.

Additionally, we find that avg-best achieves similar or better performance than LTP for every workload. Specifically,
avg-best reduces execution time compared to LTP by 6.4%, on average, with a best case reduction of 32% for QMCPACK.
The LTP approach extends the NUMA balancing infrastructure to scan and find the most frequently used pages in
slower memory and then promotes them to faster memory. In addition to being entirely page based, LTP relies on
timing-based heuristics that are very workload dependent and relatively slow to respond to changing access patterns [4].
As a result, LTP is much more conservative when moving data between tiers than our approach, as evidenced by the
bandwidth results in Figure 6. However, the increased efficiency of profiling objects rather than pages and a migration
policy that responds more quickly to changing program behavior can overcome the additional migration overhead of
our approach, and leads to better overall performance for these workloads.

Lastly, in the two cases where the indv-best configuration differs from avg-best, indv-best exhibits similar or worse
performance than avg-best in both cases. Thus, while the avg-best policy performs relatively well for all full size
applications, some individual object tiering policies may not scale with different inputs of the same application.

5.4.1 Performance Impact of Proactive Object Tiering. Our next set of experiments examines the performance impact of
proactively assigning data objects to a specific tier based on the tier recommendations of objects allocated at the same
allocation site. For this evaluation, we use our framework with the bkmalloc+MD avg-best configuration and extend it
to support proactive object tiering as described in Section 3.5.

There are a number of design choices and parameters that can impact the operation and effectiveness of this technique.
For example, one option is to enable proactive object tiering for a given allocation site even if only a bare majority of its
active objects have been assigned to the same tier, while another may require that all of a site’s objects remain on the
same tier for some time before altering the tier preference for that site. We considered a range of options for deciding if
5The full SNAP input seems to be very sensitive to microarchitectural effects on our platform. We suspect that changes in the data layout are causing
outsize differences in memory traffic due to effects on processor caching and prefetching. Indeed, we found that simply disabling the hardware prefetchers
causes Memory Mode and LTP to generate more memory bandwidth than the default configuration (though still less than bkmalloc+MD avg-best).
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and when to apply proactive object tiering and chose to conduct our evaluation and present detailed results for the
following conservative scheme. By default, each allocation site attempts to assign new objects to the faster memory tier,
if space is available. At each migration event, the MAT Daemon examines all of the object tier assignments, and only
if all of the active objects associated with a particular site have been assigned to the slower memory, it instructs the
allocator to assign new data from that site to the slower memory tier, and otherwise, the allocator continues to prefer
faster memory for that site.
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Fig. 7. Performance (execution time) of proactive object tiering
with allocation site guidance. All results are shown relative to the
bkmalloc+MD avg-best configuration (lower is better).

Figure 7 shows the execution time of this approach
for our full size workloads relative to the default bkmal-
loc+MD avg-best configuration without proactive object
tiering. Thus, this technique significantly reduces the ex-
ecution time for two of our six workloads, with speedups
of 19% and 17% for QMCPACK and IdenProf, respectively.
Unsurprisingly, we found these workloads have a rela-
tively high number of unique allocation sites (ranging
from 2 to 4 thousand) compared to the other benchmarks
(with only a few hundred), and thus provide more op-
portunities for this technique to be applied effectively.
Additionally, the execution times of the other benchmarks
are mostly unaffected, with a worst case slowdown of
2% for LULESH. In experimenting with different parameters, we found that strategies that apply this approach more
aggressively often achieve similar performance gains for cases such as QMCPACK, but may incur more significant
slowdowns for benchmarks that are unaffected by this conservative scheme.

5.5 Flexible and Effective Object Tiering for Multi-Application Scenarios

Our final set of experiments aims to evaluate the effectiveness of our framework for managing the memory of multiple
applications executing concurrently on a shared memory platform. For this evaluation, we consider a scenario where a
low priority task with high capacity requirements executes alongside a high priority task that needs faster memory
for high performance. Most heterogeneous memory platforms provide software tools, such as numactl, that enable
applications to require or prefer that all of their allocations are assigned to a specific memory tier. Hence, one approach
to address this scenario is to use numactl, or a similar tool, to bind allocations from the high priority task to the faster
memory and allocations from the low priority task to the slower memory. However, this approach is inflexible and may
under-utilize fast memory resources if the high priority application is not always running or does not use all of the
capacity in the faster tier.

Another option is to use an existing system-wide management approach that manages data for both applications
at a finer grain. For instance, one could employ the Linux Tiering Patches to conduct profile guided data tiering at
the page level or one of the previously described policies available in MAT Daemon to conduct tiering of objects for
both applications in a unified manner. While these approaches are less wasteful of fast memory resources, they do not
consider application priority, and are thus vulnerable to slowdowns due to suboptimal placement of high priority data.

To address these limitations and support task sets with different priorities, we extended our framework with features
to interpret and enforce application priorities during object tiering. Specifically, when an application initially connects
to the MAT Daemon or sets its own priority, the daemon will compare the new priority to that of the other connected
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applications. If there are multiple applications with different priorities, the daemon will begin migrating all of the data
corresponding to lower priority applications to the slower memory. Then, as long as a priority difference exists among
the active task set, the runtime will continue to ensure that new and existing objects for the low priority tasks are
always assigned to the slower memory tier. In this scenario, our extended framework may still employ guided object
tiering to manage access to the faster memory, but it will only consider objects corresponding to the highest priority
task(s) for assignment in the faster memory tier.

Hence, this policy assumes that the high priority application(s) will use most or all of the fast memory resources
effectively. For cases where it is known that the high priority processes will use only a portion of fast memory resources,
the policy could be further extended to move only a certain amount of the low priority data to slower memory and to
limit new allocations so that the fast memory capacity that is necessary for high priority allocations is always available.

To evaluate this approach, we conducted experiments with two tasks executing concurrently on our experimental
platform: 1) a high priority task that executes one of our benchmarks with the shared input, and 2) a low priority
task that always executes QMCPACK with the full input, but restricted to use only 16 software threads. We chose
QMCPACK’s full input as the low priority task due to its capacity requirements, which exceed the capacity of DDR4, as
well as its ability to stress both allocator and memory bandwidth on our platform. For each experiment, we start the
low priority task first and allow it to initialize its main data structures and reach its main execution loop (about 20
minutes of program startup) before starting the high priority task. We also use numactl to assign application threads to
computing cores such that threads from different applications do not share private (L1 and L2) caches. The last level
(L3) cache and both memory tiers are shared among the threads in both the high and low priority tasks.

We tested each application with four memory tiering configurations:

(1) the baseline configuration uses numactl to assign data from the high priority task to fast (DDR4) memory and
data from the low priority task to slow (Optane) memory,

(2) Linux Tiering Patches is the approach from [29] described in Table 5 with no application priorities,
(3) bkmalloc+MD Default is bkmalloc+MD avg-best from Section 5.4 with no application priorities, and
(4) bkmalloc+MD Priority employs the bkmalloc+MD avg-best approach with the priority scheme described above.

Figure 8 presents the execution time of the high and low priority tasks with the LTP, bkmalloc+MD Default, and
bkmalloc+MD Priority configurations relative to the baseline configuration with each task bound to a specific memory
tier. For each configuration, we plot separate bars for the performance of the high (left) and low (right) priority tasks.
The names of the high priority tasks are presented along the x-axis.

We find that the LTP and bkmalloc+MD Default configurations exhibit very similar performance for both tasks. This
result occurs because any potential benefit of one approach over the other is negated by their inability to consider
application divisions and priorities. Specifically, we observed that both strategies capture a portion of each application’s
most frequently used data in the faster memory tier, but also leave a significant amount of hot data from both tasks on
slower memory. Moreover, migrations are more frequent because phase changes in one application are more likely to
evict hot data belonging to the other application. As a result, the high priority task slows down and the low priority
task exhibits little to no improvement, in most cases.

Conversely, the high priority task of the bkmalloc+MD Priority configuration achieves very close to the ideal
“everything-in-DRAM” performance of the baseline configuration. This result makes sense because our priority scheme
reserves the entire upper tier for the high priority task as soon as its execution begins. The small slowdown is primarily
due to the extra cost to move low priority data out of faster memory when the high priority task starts up. At the same
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Fig. 8. Performance (execution time) of high and low priority applications executing concurrently with different tiering approaches
(lower is better).

time, this approach enables significant speedups for the low priority task. In contrast to the baseline configuration, which
binds all of the low priority task’s data to the slower memory tier throughout its entire execution, the bkmalloc+MD
Priority configuration is able to employ guided object tiering and utilize the faster memory more efficiently when
the high priority task is not running. As a result, the low priority task enjoys a 26% speedup, on average, compared
to the inflexible baseline configuration. Thus, our approach has potential to enable significantly better utilization of
heterogeneous memory resources in mixed priority scenarios.

6 FUTUREWORK

There are many avenues for future research. First, we plan to develop techniques that leverage deeper integration of
MAT Daemon with system-level migration routines to reduce data migration costs. In particular, we are working to
build new tools that identify and replicate RD-only and RD-mostly data across memory tiers and coordinate moving
pages into and out of faster memory with application behavior. Our approach will copy application data to larger
and slower memory tiers during periods when system bandwidth is under-utilized. Later, during periods of higher
demand, our runtime will be able to free up fast memory capacity quickly by simply remapping the page table entries
of replicated data to point to copies in slower memory storage.

Next, we plan to enhance our proactive object tiering approach by extending it to interpret static, compiler-based
analyses that identify and track other program data features, such as the set of routines or instructions that access groups
of data. In this way, our runtime will be able to distinguish related sets of objects before dynamic profile information is
available. At the same time, we will also extend our BPF tools to enhance system-level profiling and enable control over
the placement of kernel memory objects, as described in Section 3.3.1.

Additionally, we will use our framework to evaluate object tiering with a broader set of architectural configurations
and workloads. In the next few years, memory systems will become even more complex, with more diverse memory
technologies and capabilities, including: high bandwidth and disaggregated memories, mixed HW/SW data management
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modes, processing-in-memory, and new types of GPUs and accelerators. By building upon standard Linux facilities
and the longstanding NUMA API, our framework has been intentionally designed for portability to systems with new
and diverse memory technologies. Moreover, its modular policy description framework enables researchers to rapidly
devise and develop new tiering strategies for memory hardware with varying characteristics and constraints. Thus,
as richer memory architectures and interconnects emerge, we plan to extend this work to investigate and exploit the
diverse mix of hardware capabilities, platform capacities, and system organizations.

7 CONCLUSION

This work presents a novel software framework for enabling profile-guided object tiering on heterogeneous memory
platforms. The approach employs a custom allocator and system-wide monitoring daemon to provide fast and flexible
object tiering for single process or mixed workloads without offline profiling or recompilation of target applications.
The framework is also used to evaluate the effectiveness of various choices made during object tiering, including how to
prioritize objects for placement in the fast memory tier and when to migrate program data. Overall, the findings show
that profile-guided object tiering produces substantial speedups compared to other software-based approaches, including
a recent OS-based approach that uses page profiling to direct memory tiering. Moreover, it extends this framework
with new features that are able to assign program data objects to the appropriate tier before profile information is
available and new policies for utilizing fast, but capacity-limited, memories efficiently in scenarios where high and low
priority applications share the same memory resources. The extended evaluation shows that these capabilities can be
seamlessly integrated into the original framework and enable substantial performance and efficiency benefits for a
variety of memory-intensive workloads in multiple execution scenarios.
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