Eliminating False Phase Interactions to Reduce
Optimization Phase Order Search Space

Michael R. Jantz

Prasad A. Kulkarni
Department of Electrical Engineering and Computer Science
University of Kansas
Lawrence, KS 66045
{mikejant,prasadk}@ku.edu

ABSTRACT 1. INTRODUCTION

Compiler optimization phase ordering is a longstanding problem, — Compiler optimization phase ordering and selection have been
and is of particular relevance to the performance-oriented and cost-longstanding and persistent problems for compiler writers and users
constrained domain of embedded systems applications. Optimiza-alike [27, 23, 10]. Each optimization phase applies a sequence of
tion phases are known foteract with each other, enabling and transformations to improve the quality of the generated code for
disabling opportunities for successive phases. Therefore, varyingsome measure of performance, such as speed, code-size ar powe
the order of applying these phases often generates distinct out-consumption. Optimization phases require specific code patterns
put codes, with different speed, code-size and power consumptionand/or availability of architectural registers to do their work. Con-
characteristics. Most current approaches to address this issue fosequently, phases interact with each other by creating or destroy-
cus on developing innovative methods to selectively evaluate the ing the conditions necessary for the successful application of suc-
vast phase order search space to produce a good (but, potentialigessive phases. Unfortunately, no single ordering of optimization
suboptimal) representation for each program. phases is able to produce the best code for all programs in any in-
In contrast, the goal of this work is to study and identify com- vestigated compiler [28, 8, 19, 26, 16]. Instead, the ideal phase se-
mon causes of optimization phase interactions across all phasesguence depends on the characteristics of the code being compiled,
and then devise techniques to eliminate them, if and when possi-the compiler implementation, and the target architecture.
ble. We observe that several phase interactions are caudatsey The most common solution to the phase ordering problem em-
register dependence during many optimization phases. We furtherploys iterative search algorithms to evaluate the performance of
find that depending on the implementation of optimization phases, the codes produced by many different phase sequences and select
even an increased availability of registers may not be able to sig- the best one. Although this process may take longer than tradi-
nificantly reduce such false register dependences. We explore thetional compilation, longer compilation times are often acceptable
potential of cleanup phases, suchregister remappingand copy when generating code for embedded systems. Many embedded sys-
propagation at reducing false dependences. We show that innova- tem developers attempt to build systems with grsbughcompute
tive implementation and application of these phases to reduce falsepower and memory as is necessary for the particular task. Most em-
register dependences not only reduces the size of the phase ordepedded systems are also constrained for power. Thus, reducing the
search space substantially, but can also improve the quality of codespeed, code size, and/or power requirements is extremely crucial

generated by optimizing compilers. for embedded applications, as reducing the processor or memory
cost can result in huge savings for products with millions of units
Categories and Subject Descriptors shipped.

. .)) However, the large number of optimization phases typically avail-
D.3.4 [Programming Languageg: Processors- compilers, opti- gple in current compilers results in extremely large phase order

mization search spaces that are either infeasible or impractical to exhaus-
tively explore [22]. Therefore, reducing the compilation time of
General Terms iterative phase order space search is critical to harnessing the most
Performance, Measurements, Algorithms. benefits from modern optimizing compilers. Shorter iterative com-
pilation times can be accomplished by two complementary approaches:
Keywords 1. develop techniques to reduce the phase order search space
itself, or

Phase Ordering, False Register Dependence.
2. devise new search strategies that can perform a mtaié-
gentbut partial exploration of the search space.

Permission to make digital or hard copies of all or part of thikwfor Most recent and existing research effortsidlely focused on the
personal or classroom use is granted without fee providatidbpies are second approach, and attempts to employ statistical or machine
not made or distributed for profit or commercial advantage aatidbpies learning methods, along with enhanced correlation techniques to
bear this notice and the full citation on the first page. Toycaiherwise, to restrict the number of phase sequences that are reached and re-

republish, to post on servers or to redistribute to listguies prior specific quire evaluation during the iterative search. By contrast, the goal

permission and/or a fee. ; . S =
CASES'100ctober 24—29. 2010, Scottsdale, Arizona, USA. of this work is to analyze and address the most common optimiza-

Copyright 2010 ACM 978-1-60558-903-9/10/10 ...$10.00. tion phase interactions and develop solutions that can substantially

reduce the phase order search space. We believe that such redugredictive modeling to find effective, but potentially suboptimal,
tion will make exhaustive phase order searches more practical. Atoptimization phase sequences [8, 15, 19, 2, 1, 21, 14]. Other
the same time, understanding and resolving optimization phase in-approaches employ statistical techniques such as fractional facto-
teractions can also enable better predictability and efficiency from rial design and the Mann-Whitney test to find the set of optimiza-
intelligent heuristic based searches. tion flags that produce more efficient output code [5, 12, 24]. Re-
Registers are an important resource during the application of searchers have also observed that when expending similar effort
many optimization phases, especially in a compiler backend. It most heuristic algorithms produce comparable quality code [2, 21].
is well recognized that the limited number of registers causes sev-Our results presented in this paper can enable iterative searches to
eral phase interactions and ordering issues by enabling phases whenperate in smaller search spaces, allowing faster and more effective
registers become available and disabling transformations when allphase sequence solutions.
registers are in use [4, 13]. Interestingly, our analysis of the phase Investigators have also developed algorithms to manage the search
order search space found that many phase interactions are neticaustime during iterative searches. Static estimation techniques have
by register contention, but exist due to the dependences betweerbeen employed to avoid expensive program simulations for perfor-
and during phase transformations that reuse the same register nummance evaluation [7, 22, 26]. Agakov et al. characterized programs
bers. We term such dependence$adsephase interactions. using statideaturesand developed adaptive mechanisms using sta-
In this work, we develop approaches to explore the extent and tistical correlation models to reduce the number of sequences eval-
impact of false phase interactions due to false register dependencesiated during the search [1]. Using program features they first char-
on the phase order search space size and generated code perfoacterized an optimization space of’lghase sequences, and then
mance. We find that techniques to reduce false register depen-employed statistical correlation models to speed up the search on
dencedetweerphases has a huge limiting effect of the size of the even the larger optimization spaces. Kulkarni et al. employed sev-
search space. We further find that reducing false dependdoces eral pruning techniques to deteetdundantphase orderings that
ing phases can also provide additional optimization opportunities are guaranteed to produce code that was already seen earlier dur-
and result in improving the quality of the code produced by such ing the search to avoid over 84% of program executions during
phases. Thus, the work presented in this paper shows promise tatheir genetic algorithm search [17, 20]. However, in contrast to our
not only improve the state of iterative compilation for optimization approach, none of these methods make any attempt to understand

phase ordering, but also providaidelinesor compiler implemen- phase interactions and alter the actual search space itself.
tations to generate higher-quality code. Research has also been conducted to completely enumerate and
Thus, the major contributions of our research are: explore components of the phase order search space. Most of these

.) L research efforts have found the search space to be highly non:linear

1. This is the first research to analyze the optimization phase pt with many local minima that are close to the global minimum [15,
interactions to reduce the phase order search space and imy 21]. Sych analysis has helped researchers devise better heuris-

prove code quality. tic search algorithms. Kulkarni et al. developed a novel search

2. We show that the problem of false register dependence is dif- strategy to achieve exhaustive evaluation of the entire phase order
' search space and find thestphase ordering for most functions

Iﬁ;egitzzooTtLegsrt\:\tsggfj grr i ::;LCJESS'; ;Cd e3|gn|f|cantly Impacts in their embedded systems benchmarks, but the searches required

several hours to a few weeks in many cases [22]. We employ their

3. We develop techniques to reduce false register dependencedlgorithm for exhaustive search space evaluation (described in Sec-

that substantially shrink the search space size and improve tion 4.2) in our current experiments and show that our techniques
the quality of code generated by compiler optimizations. to reduce false phase interactions result in much faster exhaustive

searches. Thus, our work to understand and reduce the phase or-
The rest of the paper is organized as follows. We describe relatedder search space will most likely further benefit all such exhaustive

work in the next section. In Section 3 we explain our observations enumeration schemes.
regarding false register dependence between phases. We present Research has also been conducted to understand and apply ob-
our experimental framework in Section 4. In Section 5 we show servations regarding optimization phase interactions. Some such
that the effects of false register dependence are often independenstudies use static and dynamic techniques to determine the enabling
of register pressure issues. We study the effect of eliminating false and disabling interactions between optimization phases. Such ob-
register dependences on the size of the search space in Section 6. Igervations allow researchers to construct a siogiepromisghase
Section 7 we develop mechanisms to reduce false register depenordering offline [28] or generatetzmtchcompiler that can automat-
dence to limit the size of the search space and improve code qual-ically adapt its phase ordering at runtime for each application [18].
ity. We list avenues for future research in Section 8, and present Although such custom phase orderings generally perform better

our conclusions in Section 9. that the default sequence used in their compilers, none of these ear-
lier works made any attempt to understand the causes behind those
2. RELATED WORK phase interactions.

Most related to our current research are studies that attempt to

In this section we describe previous work in the areas of un- analyze and correct the dependences between specific pairs of op-
derstanding and addressing the issues of optimization phase or-. Yz P . P P P

:) . timization phases. Leverett noted the interdependence between the
dering and selection. Researchers have observecexthatustive

evaluation of the phase order search space to find the optimal func-phases ofonstant foldingandflow analysisandregister allocation

tion/program instance, even when feasible, is generally too time- andcode generatiomn the PQCC (Production-Quality Compiler-

consuming to be practical. Therefore, most research in addressingcomp"er) project [23]. Vegdahl studied the interaction between

phase ordering employs iterative compilation to partially evaluate ggﬂiti%inf%rﬂgtmmnggﬁ?g?;']o n;)]:j asuhor:ezsotztdal\l;/rli_(l)\llj\ls-llge Irno-aches
a part of the search space that is most likely to provide good so- to combine the two phases tc; ether fgrgim roved erfofnﬁ)ance in
lutions. Many such techniques use machine learning algorithms, T pha 9 P pert

. ; ST . - certain situations. The interaction betweegister allocationand
such as genetic algorithms, hill-climbing, simulated annealing and

1. 1[12] = r[12] - 8; 1. r12] =r12] - 8; 1. r[12] = r[12] - 8;

2. r[1] =r[12]; 2. 1] =r[12] - 8;

3. 1] = r[1}2; 3. 1] = f[12){2;

4. 112] =r[13] + .LOC; 4. 1[12] = r[13] + .LOC; 4. 1[12] = 1[13] + .LOC; 4. r[0] = r[13] + .LOC;

5. r[12] = Load[r[12] + r[1]]; 5. r[12] = Load [r[12] + (r[1}{2)]; 5. r[12] = Load[r[12] + r[1]]; 5. r[12] = Load[rp] + (r[12]{2)];

(a). original code (b) instruction selection (c) common subexpression (d) register remapping

followed by common elimination followed removes false register
subexpression elimination by instruction selection dependence

Figure 1: Using register remapping to eliminate false register dependence

1. r[18] = Load [L1]; 1. r[18] = Load [L1]; 1. r[18] = Load [L1];

2. r[7] =r[18]; 2. r[7] = Load[L1]; 2. 1[7] =r[18];

3. r[21] =r[7];

4. r[24] = Load[r[21]];

5. 1[5] = r[24]; 5. r[5] = Load[r[7]]; 5. r[5] = Load [r[18]]; 5. r[5] = Load [r[18]];

6. =1[7]; 6. ... =171, 6. =r[7]; 6. ... =g

(a). original code (b) instruction selection (c) common subexpression (d) copy propagation

followed by common elimination followed removes false registel
subexpression elimination by instruction selection dependence

Figure 2: Using copy propagation to eliminate false register dependence

code schedulindnas been studied by several researchers. Sug- benchmark functions. We also designed several scripts to assist our
gested approaches include using postpass scheduling regter manual study of these search spaces to detect and analyze the most
ter allocation) to avoid overusing registers and causing additional common phase interactions. Surprisingly, we observed that many
spills [13, 9], construction of a register dependence graph (usedindividual phase interactions occur, not due to conflicts caused by
by instruction scheduling) during register allocation to reduce false limited number of available registers, but by the particular register
scheduling dependences [25, 3], and other methods to combine thenumberghat are used in surrounding instructions. The limited sup-
two phases into a single pass [10]. Earlier research has also studiegly of registers on most conventional architectures force optimiza-
the interaction betweeregister allocationand instruction selec- tion phases to minimize their use, and recycle register numbers as
tion [4], and suggested using a common representation languageoften as possible. Many compilers also use a fixed order in which
for all the phases of a compiler, allowing them to be re-invoked re- free registers are assigned, when needed. Different phase order
peatedly to take care of several such phase re-ordering issues. Unings can assign different registers to the same program live ranges.
like our current research, most of these earlier works only studied These different register assignments sometimes result in false reg-
pair-wise andrue phase interactions between optimization phases ister dependences that disable optimization opportunities for some
and did not study the effect of removing these interactions on the phase orderings while not for others, and cause optimizations ap-
size of the phase order search space. Rather than focus on speplied in different orders to produce distinct codes. Such false reg-
cific phases, our research attempts to discover and address causdster dependence may result in additionapy (register to register
of false phase interactions between all compiler phases to reducemove) instructions in certain cases, or may cause optimizations to
the phase ordering search space. miss opportunities at code improvement due to unfavorable reuse
of certain registers at particular program locations. We call phase
interactions that are caused by false register dependendasas

3. FALSE PHASE INTERACTIONS interactions Such false interactions are often quite arbitrary and

Architectural registers are a key resource whose availability, or not only impact the search space size, but also make it more diffi-
the lack thereof, can affect (enable or disable) several compiler cult for manual and intelligent heuristic search strategigsedict
optimization phases. It is well-known that the limited number of good phase orderings.
available registers in current machines and the requirement for par- Figures 1 and 2 illustrate examples of phase interactions due to
ticular program values (like arguments) to be held in specific regis- false register dependence betweestruction selectiorand com-
ters hampers compiler optimizations and is a primary cause for the mon subexpression elimination (CSE)n the first example, Fig-
phase ordering problem [4]. Our goal for this work is to study the ure 1(a) shows the code before applying either of these two phases.
effect of register availability and assignment on phase interactions, Figures 1(b) and 1(c) show code instances that are produced by
and the impact of such interactions on the size of the phase orderapplying CSE and instruction selection in different orders. Without
search space.

Towards this goal, we employed existing strategies [22] to gen-
erate the exhaustive phase order search spaces for a few of outThe description of these phases can be found in Table 1.

Optimization Phase | Description |

branch chaining Replaces a branch or jump target with the target of the last jartipe jump chain.

common subexpression Performs global analysis to remove fully redundant calooitesti Also includes global constant and copy propagation.

elimination

remove unreach. code Removes basic blocks that cannot be reached from the furetitop block.

loop unrolling Potentially reduce the number of comparisons/branches treiand assist scheduling at the cost of code size incrgase.

dead assign. elim. Uses global analysis to remove assignments when the assighedis never used.

block reordering Removes a jump by reordering blocks when the target of the jumphiy a single predecessor.

minimize loop jumps Removes a jump associated with a loop by duplicating a portidinedoop.

register allocation Uses graph coloring to replace references to a variablemathve range with a register.

loop transformations Performs loop-invariant code motion, recurrence eliminatioop strength reduction, and induction variable elimioti
on each loop ordered by loop nesting level.

code abstraction Performs cross-jumping and code-hoisting to move identicatuctions from basic blocks to their common predecegsor
Or SUCCEessOor.

eval. order determ. Reorders instructions within a single basic block in anmfteto use fewer registers.

strength reduction Replaces an expensive instruction with one or more cheapsr. dior this version of the compiler, this means chanding
a multiply by a constant into a series of shift, adds, and sohtr

reverse branches Removes an unconditional jump by reversing a cond. branch wiheanches over the jump.

instruction selection Combines pairs or triples of instructions together whereirtsguctions are linked by set/use dependencies. Also per-
forms constant folding and checks if the resulting effectlisgal instruction before committing to the transformation

remove useless jumps Removes jumps and branches whose target is the followingquaaitlock.

Table 1: VPO Optimization Phases

going into the specific details of what this code dbag wanted to Category| Program |'=: lles/ Description
note that the code in Figure 1(c) is inferior due to the reuse of regis- . uncs. - - - —
terr [12], which prevents instruction selection (applied after CSE) ‘2”;2, - gf.tliotl:nt 12 12 tgﬁi pt:o,c' br']t r::an;pulfhnoln a?;lrl]t::s
from combining instructions numbered 3 and 5, and thus leaving an |-1ewo ykstra kstra s snortest path algort

dditi i ion in th d code. Applving i : telecomn adpcm 2 3 | compress 16-bit PCM samples
additional instruction in the generated code. Applying instruction —7rc e ipeg 7 [62 | image compression and decomp.
selection before CSE avoids this false register dependence issue security | sha 2 | 8 [secure hash algorithm
producing better code in Figure 1(b). Similarly, in the second ex- [Toffice search 4| 10 | searches for given words in phrasgs

ample shown in Figure 2, applying CSE before instruction selection
leaves a redundant copy instruction in the code (Figure 2(c)) due to
an unfavorable register assignment. Even later and repeated appli- Table 2: MiBench Benchmarks Used

cation of optimization phases are often not able to correct the ef-

fects of such register assignments. Thus, phase interactions due to

false register dependences can produce distinct function instances.

Successive optimization phases working on such unique function embedded systems, and hence uses a loop unroll factor of 2. In
instances produce even more distinct points in the search space iraddition,register assignmentvhich is a compulsory phase that as-

a cascading effect that often causes an explosion in the size of thesigns pseudo registers to hardware registers, is implicitly performed
phase order search space. Before describing our proposed solutio by VPO before the first code-improving phase in a sequence that
and experimental results, we present our experimental framework requires it. After applying the last code-improving phase in a se-

in the next section. quence, VPO performs another compulsory phase that inserts in-
structions at the entry and exit of the function to manage the acti-

4. EXPERIMENTAL SETUP vation record on the run-time stack. Finally, the compiler also per-
formsinstruction schedulindgpefore generating the final assembly

In this section we describe our compiler framework and the setup

employed to perform our studies code.
ploy P ' For our experiments in this paper, VPO has been targeted to gen-
4.1 Compiler Framework erate code for the StrongARM SA-100 processor using Linux as

perating system. The ARM is a simple 32-bit RISC instruc-
set. The relative simplicity of the ARM ISA combined with
the low-power consumption of ARM-based processors have made
this ISA dominant in the embedded systems domain. We use the
SimpleScalar set of functional simulators [6] for the ARM to get
dynamic performance measures.

For this work we use a subset of the benchmarks fronviisench
benchmark suite, which are C applications targeting specific areas
of the embedded market [11]. We selected one benchmark from
each of the six categories of applications present in MiBench. Ta-
ble 2 contains descriptions of these programs. VPO compiles and
optimizes individual functions at a time. The 6 selected bench-
marks contain a total of 107 functions, out of which 37 are ex-
2The *{’ operator in the instructions in Figure 1 performs a left ecuted (at least once) with the standard input data provided with
shift. each benchmark.

The research in this paper uses the Very Portable Optimizer (VPOEEA}ﬁ
which is a compiler back-end that performs all its optimizations on
a single low-level intermediate representation called RTLs (Reg-
ister Transfer Lists). VPO applies several low-level optimization
phases that involve registers, providing us with an ideal framework
to investigate register dependence effects during phase orderings.

The 15reorderableoptimization phases currently implemented
in VPO are listed in Table 1. Most of these phases can be applied
repeatedly and in an arbitrary order. Unlike the other VPO phases,
loop unrolling is applied at most once and with a loop unroll factor
of 2 for our current experiments. The VPO compiler is tuned for
generating high-performance code while managing code-size for

figuration. The algorithm terminates when no additional phase is
successful in creating a new distinct function instance.

Thus, this approach can make it possible to generate/evaluate
the entire search space, and determine dpgmal function in-
stance. Furthermore, any phase sequence from the phase order
search space can be mapped to a node in the DAG of Figure 3.
This space of all possiblistinct function instance®r each func-
tion/program is, what we call, thectual optimization phase order
search space, and the size of each search space is measured as the
number of nodes in this DAG. All our search space comparisons
in this paper evaluate the reduction in the number of nodes of the
exhaustive search space DAG of the unmodified compiler that is
accomplished by each technique.

4.3 Dynamic Performance Measurements

Invoking thecycle-accuratesimulator for evaluating the perfor-
mance of every distinct phase sequence produced by the search al-
gorithm is prohibitively expensive. Therefore, we have adopted an-

Figure 3: DAG for Hypothetical Function with Optimization other technique that can provide quigknamic instruction counts
Phases, b, and ¢ for all function instances with only a few program simulations per
phase order search [7, 22]. In this scheme, program simulation is
. . only needed on generating a function instance during the exhaus-
4.2 A|90r|_thm for Exhaustive Search Space Enu- tive search with a yet unseeontrol-flow Such function instances
meration are then instrumented and simulated to determine the number of

Our goa| in this research is to understand the effect of false reg- times each basic block in that control-flow is reached during ex-
ister dependences on the size of the phase order search space. T@eution. Then, dynamic performance is calculated as the sum of
generate these per-function exhaustive phase order searcls spacéhe products of each block’s execution count times the number of
we implemented the framework presented by Kulkarni et al. [22]. static instructions in that bIocI§. Interestingly, researchers have e}lso
Our exhaustive phase order searches use all of VPO's 15 reorder Shown that dynamic instruction counts bear a strong correlation
able optimization phases. In this section we describe this algorithm With simulator cycles for simple embedded processors [22]. Note

A naive approach to enumerate the exhaustive phase order searcundancy in the phase order search space and reduce the time for
space would be to generate (and evaluate the performance of) allPhase order searches, while still producing the original best phase
possible combinations of optimization phases. This naive approachordering code. Thus, although we do not use performance numbers
is clearly intractable because it does not account for the fact that Obtained from a cycle-accurate simulator, our dynamic instruction
tion instancg. Another way of interpreting the phase orderin
problem is g) enumerate a>lll possiblg func%ion inpstances that c?an 4.4 Parallel Searches
be produced by any combination of optimization phases for any While the techniques described earlier have made exhaustive searches
possible sequence length (to account for repetitions of optimiza- much more efficient, enumerating the search space for several of
tion phases in a single sequence). Such an interpretation makes theur benchmark functions still requires several days (or longer) of
problem of exhaustive phase order enumeration much more practi-computation. The results in this paper required several hundred ex-
cal because it is observed that different phase sequences display &austive phase order searches across all benchmark functions an
lot of redundancy and frequently result in generating the same codeexperimental configurations. The experiments described in this pa-
as some earlier sequence. Thus, this interpretation of the phase orper were only made possible due to our access to a high perfor-
dering problem allows the phase order search space to be viewedmance computing cluster to run our compute-intensive and inde-
as a directed acyclic graph (DAG) distinctfunction instances. pendent experiments. The Bioinformatics Cluster at the Informa-

Each DAG is function or program specific, and may be repre- tion and Telecommunication Technology Center (ITTC) at the Uni-
sented as in Figure 3 for a hypothetical function and for the three versity of Kansas contains 176 nodes (with 4GB to 16GB of main
optimization phases, b, andc. Nodes in the DAG represent func- memory on each node) and 768 total processors (with frequencies
tion instances, and edges represent transition from one functionranging from 2.8GHz to 3.2GHz). With this computing power, we
instance to another on application of an optimization phase. The were able to parallelize the phase order searches by running many
unoptimized function instance is at the root. Each successive leveldifferent searches on individual nodes of the cluster. As an indi-
of function instances is produced by applying all possible phases cation of the compute-intensiveness of this study, we note that the
to the distinct nodes at the preceding level. It is assumed in Fig- usage logs from the cluster show that experiments related to this
ure 3 that no phase can be successful multiple times consecutivelyproject would have required several years of single CPU time. De-
without any intervening phase(s) in between. This algorithm uses spite the available computing power, we were unable to completely
various redundancy detection schemes to find phase orderings thaenumerate the exhaustive phase order space for all of our bench-
generate the sanfanction instanceas the one produced by some mark functions with some of the experimental configurations of
earlier phase sequence during the search. Such detection enablegPO due to time / space constraints. Individual exhaustive searches
this algorithm to prune away significant portions of the phase order that took longer than two weeks or generated raw data files larger
search space, and allows exhaustive search space enumeration fadhan the maximum allowed on our 32 bit system (2.1GB) were sim-
all functions in our benchmark set with the default compiler con- ply stopped and discarded.

5. EFFECT OF REGISTER PRESSURE ON 8 135
PHASE ORDER SPACE AND PERFOR- g 1.3 1 _
MANCE “;.;. 1.25 |
We have seen that several optimization phase interactions are 5 121
caused by different register assignments produced by differaseph g 1.15 -
orderings. Such effects can cause a false register dependence to | ® 4 |
disable optimization opportunities for some phase orderings while % 105 4
not for others. False register dependence is probably an artifact of 5
the limited number of registers available on most machines. Such z ‘ ‘ ‘ ‘ ‘ ‘ ‘
register scarcity forces optimization phases to be implemented in a 24 32 48 64 96 128 256 512
fashion that reassigns the same registers often and as soon as they # Available Registers

become available. If phases are implemented correctly, then a de-
crease in register pressure should also reduce false register depen- .]
dences. If so, then we should expect the phase order search spacEigure 4: Search space size compared to default for different
to shrink with increasing register availability. However, a greater register configurations

number of registers may alsmableadditional phase transforma-
tions, expanding the phase order search space and made visible by \D Increase W Decrease\
some increase in performance of the best code generated during 35
the search as compared to the default. In this section we present
the first study of the effect of different number of available regis-
ters on the size of the phase order search space and the performance
of the best code that is generated.

The ARM architecture provides 16 general-purpose registers, of
which three are reserved by VPO (stack pointer, program counter,
and link register). We modified the VPO compiler to produce code
with several other register configurations ranging from 24 to 512
available registers. We perform experiments to measure the phase 24 32 48 64 96 128 256 512
order search space size for our 107 benchmark functions in all reg- # Available Registers
ister configurations.

Since the code generated by VPO with the othiegal regis- Figure 5: Number of functions with different search space size

ter configurations cannot be simulated, we used a novel Strategycom ared to default for different reqister configurations
to evaluate code performance in such cases. As described earlier, P u 9 gu

measuring dynamic performance during our search space explo-
ration only requires program simulations for instances with unseen
basic block control-flows. Thus, until the generation of a new

of Functions with
Search Space Size
Differences

o

ally exceeds the decrease (if any) caused by reduced phase inter-
. . . actions. In fact, we have verified that the current implementation
control-flow, there is no need for further simulations. Our per- ¢ yhases in VPO assumes limited registers and naturally reuses
fprmance evaluation strateg)_/ store§ aII_ the contrql-flow informa- them whenever possible, regardless of prevailing register pressure.
tion genelrated for gach function during 'ts.eXhaUSt.'Ve search SPaCerherefore, limited number of registers is not the sole cause for false
search with 16 registers, and reuses that information to collect dy- register dependences. Consequently, more informed optimization
namic performance results during the other illegal VPO register phase implementations may be able t’o minimize false register de-

conflgura(t;cf)ns. 2er ;oun;i that nodal;jdltlc;]nal iofntrol_ﬂow? wire pendences and reduce the phase order search space. We explore
generated for 32 of the 37 executed benchmark functions for t €S€his possibility further in the next two sections.

other VPO configurations. Thus, our scheme allows us to measure
and compare the dynamic performance for 32 executed functions
in all register configurations. 6. MEASURING THE EFFECT OF FALSE
Figure 5 illustrates the impact of various register configurations REGISTER DEPENDENCE ON THE PHASE
on the size of the phase order search space, averaged over all 107 ORDER SPACE
benchmark functions, as compared to the default search space size
with 16 registers. Thus, we can see that the search space, on av- Our Tesu'ts in _th(_a previous sectlon_suggests that current imple-
erage, increases mildly with increasing number of available regis- mentation of optlmlzatlon_ phases _typlcally do not accoum for the
ters, and reaches a steady state when the additional registers are ni erCt (t)f unfa\l/?ortakl]ble tLeg'Stir a_lss%?m_entf, prodtuc::ng f";lsﬁ 52%36
longer able to create any further optimization opportunities for any intéractions. Rather than aftering the impiementation ot a

benchmark functions. Figure 5 shows the number of functions that opt;mlzatllon\/;'):hgses., \zve propose and (ljmplement two ?ewtthratnsfor-
notice a difference in the size of the search space with changing mations n TegISter remappingnd copy propagation tha

number of available registers. Thus, we observe that there is an?'® _implicitly applied after_every reorderable phas_e during our it-
almost equal number of functions that see a search space increas rative search space algorithm to reduce false register dependences

as the number that show a decrease, for all register configurations. etween phases. In this section, we show that removing such false

Performance for all, except one, of the 32 executed functions eitherp.hase interactions can indeed result in a dramatic reduction in the

improves or remains the same, resulting in an average improvements'iﬁ Off}.h‘? p:]a;fzorder searih spatce Irt] a co_r(l;plle_r ;:onﬁguraﬂon
of 1.1% in all register configurations over the default. with sufficient (512) number of registers to avoid register pressure

The overall increase in the search space size indicates that theSSUes. In the next section we adapt and employ our techniques to

expansion caused by additional optimization opportunities gener- reduce search space size_and impr_ove performance in the default
P y P PP 9 ARM-VPO configuration with 16 registers.

4
880 3
o 3 n
8 25 8
© ©
0.2, o
(7] 7]
o B £
21'5 e
g | 3
» 0.5 n
0
— O N OO M — ON WO M - O N~ W — 0O N OO M — ON WO M - O N~ W
~ N O < T IO © N~ 0 0 O O ~ N MO F T O © N~ 0 0 O O
Functions Functions

Figure 6: Search space size with register remapping compared Figure 7: Search space size with copy propagation compared to
to default (512 registers) default (512 registers)

6.1 Register Remappingto Remove False Reg- 6.2 Copy Propagation to Remove False Regis-
ister Dependences ter Dependences

Registeremappingor renamingreassigns registers to live ranges Next, based on our manual analysis of false phase interactions
in a function, and is a transformation commonly employed before in VPO, we implementedopy propagationas another transfor-
instruction schedulingo reduce false register dependences and in- Mation to potentially further minimize the effects of unfavorable
crease instruction level parallelism [9]. Figure 1(d) illustrates the register assignments. Copy propagation is often used in compilers
effect of applying register remapping (after every phase) to the code @s aclean-upphase to remove copy Instructions by r_eplacmg th_e
in Figure 1(c) to remove the false interaction between instruction occurrences of targets of direct assignments with their values. Fig-
selection and CSE in Figure 1. In this study we use 512 available ure 2(d) shows the result of applying copy propagation (after every
registers to remap as many of the conflicting live ranges as possi-Phase) to the code in Figure 2(c). Thus, we can see that applying
ble to unique register numbers. We apply this transformation after COPY propagation transmits and replae¢g] by r[18] on line 6
each regular optimization during the exhaustive phase order searct?f Figure 2(d) and eliminates the dead copy instruction on line 2.
space exploration for each function. Thus, the resulting code in Figure 2(d) is now equivalent to that

Figure 6 shows the effect of implicitly applying register remap- in Figure 2(b). We performed experiments to study the impact of
ping after every reorderable phase during the exhaustive searcHMplicitly applying copy propagation to reduce false phase interac-
space exploration on the size of the search space for all 107 bench1ions on the size of the phase order search space.
mark functions. In this figure, and in each of the subsequent fig- ~ Figure 7 shows the change in the phase order search space size
ures presented in this paper, functions are sorted from smallest tocompared to default if every original VPO phase when success-
largest default search space size and are displayed in this order irful is followed by the clean-up phase of copy propagation during
the graphs. The rightmost bar in each figure presents the average€xhaustive phase order space search for each function. Thus, on
Thus, on average, our compiler configuration with implicit register average, the application of copy propagation is able to reduce the
remapping is able to reduce the search space size by over 13% pesize of the search space by over 30.5% per function. Similar to
function. Interestingly, this technique has a more significant impact our earlier approach with register remapping, this technique has
on functions with larger default search spaces. Thus, summing up@ Mmuch more significant impact on functions with larger default
the search space sizes over all 107 functions, we find that the num-Search space sizes. Indeed, the sum the of the search space sizes
ber of total distinct function instances reduces by 37.4% compared across all functions with this configuration compared to the sum of
to the default. search space sizes with the default VPO configuration (with 512

Although register remapping cannot directly impact dynamic per- registers) shows a total search space reduction of more than 68%.
formance, it is arenablingphase that can provide more opportuni- Unlike the enabling effect produced by register remapping, copy
ties to optimizations following it. These new opportunities increase Propagation can directly improve performance by eliminating copy
the size of the search space for several functions. Indegicitly instructions. We found thatplicitly applying copy propagation
including register remapping as the!léeorderable phase in VPO after every phase allows the exhaustive phase order searches to gen
during the exhaustive phase order searches causes an unmanag@late best function instances that achieve 0.55% better performance
able increase in the size of the search space for all functions, pre-that default, on average. At the same time, we also observed that
venting the searches for many functions from finishing even after including copy propagatioexplicitly as a distinct (18) reorder-
several weeks. Therefore, it seems even more noteworthy that our@ble phase during the search space exploration (and not applying it
configuration thatmplicitly applies this transformation after every ~ implicitly after every phase) has no additional benefit in producing
phase can reduce the search space size so substantially even asfgtter code instances. Moreover, we observed that such a VPO con-
enables more phases. We also found that the additional optimiza-figuration that explicitly applies copy propagation, instead of re-
tion opportunities due to implicit application of register remapping ducing the search space, doubles the size of the phase order search
only marginally affect the best code performance found during the SPace per function, on average.
exhaustive phase order search for a few functions, and results in an
average performance improvement of 0.4%.

3 2
825 S
n w15
o 2 [}]
(%] (%]
© ©
o 15 &
o £
o 1 3]
= =
g g
@ 09 (77}
0)
— O N OO M — ON WO M - O N~ W — 0O N OO M — ON WO M - O N~ W
~ N O < T IO © N~ 0 0 O O ~ N MO F T O © N~ 0 0 O O
Functions Functions

Figure 8: Search space size with register remapping, copy Figure 9: Search space size with copy propagation compared to
propagation compared to default (512 registers) default (16 registers)

6.3 Combining Reaister Remappinag and Co is to reduce the phase order search space size, but still achieve that
Propagatign 9 pping Py same best performance as detected by the default search.

) o)) We now apply our version of conservative copy propagation im-

Interestingly, combining our two techniques is able to further pjicitly after each reorderable optimization phase during exhaustive
reduce false register dependences and the size of the phase ordejase order search space exploration (similar to its application in
sea_rch spaces. _Thus, as shownin Figure 8, implicitly applying both the ast section). Figure 9 plots the size of the search space for each
register remapping and copy propagation after every phase reducegy our henchmark functions. Thus, we can see that, similar to our
the size of the phase order search spaces by over 43.8%, on averregyits in the last section, our technique here reduces the size of
age, while marginally improving the best average performance by the search space, on average, by 27.7% per function, and the total
0.57%. This technique also has a much more significant effect on nymper of distinct function instances by 55.4%. Similarly, implicit
f_unctlons with larger default searc_h spaces. _Thus, this configura- application of copy propagation during the exhaustive search algo-
tion reduces the total number of distinct function instances gener- jtnm improves the best generated code for a few functions, im-
ated across all functions by an impressive 89.7%. Since both oUr hroving average performance by 0.50%. Thus, prudent application
implicit phases reduce false register dependences, our results in thigy techniques to remove false register dependences can be very ef-
section demonstrate that false phase interactions caused by differgctive at reducing the size of the phase order search space on real
ing register assignments are responsible for significantly contribut- 1,5chines.
ing to the size of the phase order search space.

7.2 Improving Performance with Localized Reg-
ister Remapping

7. ELIMINATING FALSE REGISTER DE- We have found that developing a similar conservative version

PENDENCE ON REAL EMBEDDED AR- of register remapping for implicit application during phase order
CHITECTURES searches is more difficult. Instead, we employ register remapping
to show how removing false register dependemniteig traditional
optimization phases can be used to increase optimization opportu-
nities and improve the quality of the generated code.

In the previous section, we showed that applying register remap-
ping and copy propagation effectively reduces the phase ordehsear
space in a machine with V'rtl.Ja”y unlimited reglsters._ Unfortu- We select instruction selection to demonstrate our application of
nately, both these transformations show a tendency to increase regy,

. . . ; —~“localizedregister remapping, but the same technique can also be
ister pressure, which can affect the operation of successive applied_ . . g . .
phases. In this section we show how we can employ our obserVa_applled to other phases. As illustrated in Figure 1(c), instruction se-
tions from the last section to adapt the behavior and application of lection (or some other optimization phase) might miss optimization

these transformations for use on real embedded hardware to reducgpportunltles due to some false register dependences. We modify

search space size and improve generated code quality, !nstruction _sele_ction to only remap th_ose live ranges tha_t are block-
' ing its application due to a false register dependence, if the trans-
. . formation would be successful otherwise. Thus, when instruction
7.1 Red_ucmg the Search Space with COpy Pmp' selection fails to combine instructions due to one or more register
agation conflicts, we identify the conflicting live ranges in these instruc-
Aggressive application of copy propagation can increase registertions, attempt to remap these so that they no longer conflict, and
pressure and introduce register spill instructions. Increased reg-then attempt to combine the instructions again. Such localized ap-
ister pressure can further affect other optimizations, that may ul- plication of register remapping can minimize any increase in reg-
timately result in changing the shape of the original phase order ister pressure as well as potentially provide further optimization
search space and eliminate the best code instance that is detectedpportunities and generate better code.
during the default search. For this reason, we developed a conser- An instruction selection transformation that is unable to combine
vative implementation of copy propagation that is only successful instructions due to false register dependence, may still fail after our
in cases where the copy instruction becomes redundant and can béocalized register remapping due to some other issues. Our first im-
removed later. Thus, our transformation only succeeds in instancesplementation of this transformation left such futile remappings in
where we can avoid increasing the register pressure. Our aim hereplace introducing new (locally remapped) function instances in the

1.2
1
0.8 -
0.6 -
0.4 4
0.2 4
L0
X ’\\0\‘5\%\%%%,,3)(73:%\@"5@

Performance

Functions

Figure 10: Performance with instruction selection remapping
transformation compared to default (16 registers)

outside the phase order search to reduce the search space size with-
out affecting the best achievable performance.

9. CONCLUSIONS

Effectively addressing the optimization phase ordering problem
is important for applications in the embedded systems domain. We
found that the problem of huge phase order search spaces is partly
a result of the interactions between optimization phases that are
caused by false register dependences. We also discover that due to
the current implementation of optimization phases, even reducing
the register pressure by increasing the number of available registers
is not sufficient to eliminate false register dependences. Our new
transformations, register remapping and copy propagation, to re-
duce false register dependences are able to substantially reduce the
size of the phase order search spaces, but at the cost of increased
register pressure that is not sustainable on real machines. We then
showed that conservative implementation of these transformations
during and between phases can still achieve impressive reductions

search space. This issue causes an explosion in the size of the phads the search space size, while also achieving better code quality.
order search space in several functions and results in an average pe

function search space size increase of 315%. Furthermore, due tol0. ACKNOWLEDGMENTS

the increased search space sizes, we were not able to complete the \ye thank the anonymous reviewers for their constructive com-

exhaustive search for 5 of our 107 benchmark functions (2 of which
were executed).

ments and suggestions. This research was supported in part by NSF
grant CNS-0953268.

Despite these issues, we found that the performance of the code

generated with this technique improved considerably. Figure 10
shows the improvement in the performance of the best code found

by the exhaustive phase order search space algorithm with the mod-

ified instruction selection for each of the 35 executed benchmark
functions over the default. We found that the best code performance

improved by 2.77%, on average. Further, we tested the usefulness

of this approach during the conventional (batch) compilation. The
batch VPO compiler applies a fixed order of optimization phases in
a loop until there are no additional changes made to the program
by any phase. We found that our modified instruction instruction
enabled the batch compiler to improve the performance of the gen-
erated code by a healthy 1.46%, on average.

Please note that in addition to instruction selection, localized reg-
ister remapping may also benefit several other low-level optimiza-

tion phases. Therefore, we believe that the concept of addressing
false dependences during optimization phases to improve the qual-

ity of generated code shows immense promise during iterative as
well as conventional compilation.

8. FUTURE WORK

There are several avenues for future work. For our current re-

search we focused on phase interactions produced by false register[

dependences and different register assignments. In the future we
plan to study other causes of false phase interactions and investigate
possible solutions. We believe that eliminating such false interac-

tions will not only reduce the size of the phase order search space, [6]

but will also make the remaining interactions more predictable. We
would like to explore if this predictability can allow heuristic search
algorithms to detect better phase ordering sequences faster. In this
work we integrated localized register remapping with instruction
selection to produce higher-quality code. In the future, we will
explore the possibility of a more conservative version of register
remapping to limit the bloat in the size of the phase order search

space, while still retaining the performance benefits. At the same [8]

time, we will attempt to similarly modify other compiler optimiza-
tions and study their effect on performance. Finally, we plan to ex-
plore if it is possible to implicitly apply other optimization phases

11. REFERENCES

[1] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin,
M. F. P. O'Boyle, J. Thomson, M. Toussaint, and C. K. I.
Williams. Using machine learning to focus iterative
optimization. INCGO '06: Proceedings of the International
Symposium on Code Generation and Optimizatgages
295-305, Washington, DC, USA, 2006.
L. Almagor, K. D. Cooper, A. Grosul, T. J. Harvey, S. W.
Reeves, D. Subramanian, L. Torczon, and T. Waterman.
Finding effective compilation sequencesUBTES '04:
Proceedings of the 2004 ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, and Tools for
Embedded Systemsages 231-239, 2004.
[3] W. Ambrosch, M. A. Ertl, F. Beer, A. Krall, M. Anton,

E. Felix, and B. A. Krall. Dependence-conscious global
register allocation. Itn proceedings of PLSAvages
125-136. Springer LNCS, 1994.
M. E. Benitez and J. W. Davidson. A portable global
optimizer and linker. IfProceedings of the SIGPLAN’88
Conference on Programming Language Design and
Implementationpages 329-338, 1988.
5] G. E. P. Box, W. G. Hunter, and J. S. HuntBtatistics for

(2]

(4]

Experimenters: An Introduction to Design, Data Analysis,
and Model BuildingJohn Wiley & Sons, 1 edition, June
1978.

D. Burger and T. Austin. The SimpleScalar tool set, version
2.0.SIGARCH Comput. Archit. New®5(3):13-25, 1997.

K. D. Cooper, A. Grosul, T. J. Harvey, S. Reeves,

D. Subramanian, L. Torczon, and T. Waterman. Acme:
adaptive compilation made efficient. LETES '05:
Proceedings of the 2005 ACM SIGPLAN/SIGBED
conference on Languages, compilers, and tools for
embedded systenmsages 69-77, 2005.

K. D. Cooper, P. J. Schielke, and D. Subramanian.
Optimizing for reduced code space using genetic algorithms.
In Workshop on Languages, Compilers, and Tools for
Embedded Systemsages 1-9, May 1999.

9]

(10]

(11]

(12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

P. B. Gibbons and S. S. Muchnick. Efficient instruction
scheduling for a pipelined architecturroceedings of the
SIGPLAN '86 Conference on Programming Language
Design and Implementatiopages 11-16, June 1986.

J. R. Goodman and W.-C. Hsu. Code scheduling and register
allocation in large basic blocks. I€S '88: Proceedings of
the 2nd international conference on Supercomputages
442-452,1988.

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,

T. Mudge, and R. B. Brown. MiBench: A free, commercially
representative embedded benchmark stBEE 4th Annual
Workshop on Workload Characterizatidbecember 2001.

M. Haneda, P. M. W. Knijnenburg, and H. A. G. Wijshoff.
Automatic selection of compiler options using
non-parametric inferential statistics. RACT '05:

Proceedings of the 14th International Conference on Parallel
Architectures and Compilation Techniquesges 123-132,
Washington, DC, USA, 2005. IEEE Computer Society.

J. L. Hennessy and T. Gross. Postpass code optimization of
pipeline constraintsACM Transactions on Programming
Languages and Systenig3):422—-448, 1983.

K. Hoste and L. Eeckhout. Cole: Compiler optimization level
exploration. Inaccepted in the International Symposium on
Code Generation and Optimization (CGO 2003)08.

T. Kisuki, P. Knijnenburg, , and M. O'Boyle. Combined
selection of tile sizes and unroll factors using iterative
compilation. Ininternation Conference on Parallel
Architectures and Compilation Techniquesages 237-246,
2000.

T. Kisuki, P. Knijnenburg, M. O’'Boyle, F. Bodin, , and

H. Wijshoff. A feasibility study in iterative compilation. In
Proceedings of ISHPC’99, volume 1615 of Lecture Notes in
Computer Sciencpages 121-132, 1999.

P. Kulkarni, S. Hines, J. Hiser, D. Whalley, J. Davidson, and
D. Jones. Fast searches for effective optimization phase
sequences. IRroceedings of the ACM SIGPLAN '04
Conference on Programming Language Design and
Implementationpages 171-182, Washington DC, USA, June
2004.

P. Kulkarni, D. Whalley, G. Tyson, and J. Davidson.
Exhaustive optimization phase order space exploration. In
Proceedings of the Fourth Annual IEEE/ACM International
Symposium on Code Generation and Optimizatiages
306—308, March 26-29 2006.

P. Kulkarni, W. Zhao, H. Moon, K. Cho, D. Whalley,

J. Davidson, M. Bailey, Y. Paek, and K. Gallivan. Finding
effective optimization phase sequencesPtaceedings of the
2003 ACM SIGPLAN Conference on Languages, Compilers,
and Tools for Embedded Systemages 12-23, 2003.

P. A. Kulkarni, S. R. Hines, D. B. Whalley, J. D. Hiser, J. W.
Davidson, and D. L. Jones. Fast and efficient searches for
effective optimization-phase sequenc&€M Transactions

on Architecture and Code Optimizatio®(2):165-198, 2005.
P. A. Kulkarni, D. B. Whalley, and G. S. Tyson. Evaluating
heuristic optimization phase order search algorithms. In
CGO ’'07: Proceedings of the International Symposium on
Code Generation and Optimizatippages 157-169, 2007.

P. A. Kulkarni, D. B. Whalley, G. S. Tyson, and J. W.
Davidson. Practical exhaustive optimization phase order
exploration and evaluatioACM Transactions on
Architecture and Code Optimizatip6(1):1-36, 2009.

B. W. Leverett, R. G. G. Cattell, S. O. Hobbs, J. M.

[24]

[25]

[26]

[27]

(28]

Newcomer, A. H. Reiner, B. R. Schatz, and W. A. Wulf. An
overview of the production-quality compiler-compiler
project.Computey 13(8):38—49, 1980.

Z. Pan and R. Eigenmann. Fast and effective orchestration of
compiler optimizations for automatic performance tuning. In
CGO ’'06: Proceedings of the International Symposium on
Code Generation and Optimizatippages 319—-332, 2006.

S. S. Pinter. Register allocation with instruction scheduling.
In PLDI '93: Proceedings of the ACM SIGPLAN 1993
conference on Programming language design and
implementationpages 248-257, New York, NY, USA, 1993.
ACM.

S. Triantafyllis, M. Vachharajani, N. Vachharajani and D. I.
August. Compiler optimization-space exploration. In
Proceedings of the International Symposium on Code
Generation and Optimizatigmpages 204-215, 2003.

S. R. Vegdahl. Phase coupling and constant generation in an
optimizing microcode compiler. IRroceedings of the 15th
Annual Workshop on Microprogrammingages 125-133.
|IEEE Press, 1982.

D. Whitfield and M. L. Soffa. An approach to ordering
optimizing transformations. IRroceedings of the second
ACM SIGPLAN symposium on Principles & Practice of
Parallel Programmingpages 137-146, 1990.

