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The main purpose of validation and verification is to improve software quality.

In this lecture, we’ll consider several questions related to software quality including:

What is software quality? What sorts of features are important for high-quality 
software?

Software quality might be different depending on your point of view. What makes 
software high quality as perceived by the customer? Or as perceived by the 
developer?

What is a software defect? Programs with more defects are often perceived to have 
lower quality.

Related to program quality is program size. How do you measure program size? 
Larger programs require more effort and might be harder to improve.

We’ll also discuss different verification techniques to improve program quality and 
examine their effectiveness.
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Throughout the next few lectures, we’ll also be discussing validation and verification.

V&V are often thought to be the same thing. They are both processes that developers 
can use to improve program quality.

However, these processes address different questions and concerns.

(credit to Boehm who also did the risk reduction framework for this construction)
Validation aims to answer the question: Have I built the right product? So, validation 
processes try to confirm that the product you’ve built meets the customer’s needs. 
Validation is typically performed at a higher level than verification, and includes 
activities such as requirements testing and architectural reviews.

In contrast, verification asks the question: Have built the product right? According to 
the ISO 9000 family of quality management standards, verification is to use 
examination and objective evidence to determine that the specified requirements 
have been fulfilled.
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For verification, the requirements might be intermediate requirements, such as the 
requirements of a particular phase or iteration.

As an example, verification is typically associated with internal reviews, such as 
design and code reviews, with in-depth analysis of some aspect of the software.
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A number of different strategies are used, both formally and informally, to verify that 
a software product is well constructed.

Some techniques that are widely used in practice are shown on this slide.

Formal and informal reviews of program design and source code are used to inspect 
the software.

Static analysis tools, such as tools to examine the call graph, or tools for identifying 
common bugs not reported by the compiler, are another useful form of verification 
and can help you reason about the program and its structure.

And dynamic analysis tools such as Pin or valgrind, debuggers, and other types of 
runtime experimentation are another form of verification that help you test different 
properties of your program.
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One of the most important aspects of software quality is the amount of errors or 
defects in the software.

In fact, Watts Humphrey, who was the leader of software quality at IBM, and who 
wrote many articles on software quality wrote in one of his articles:

“While the classical definition of product quality must focus on the customer’s needs, 
… I will concentrate on only the defect aspect of quality. This is because the cost and 
time spent in removing software defects currently consumes such a large proportion 
of our efforts that it overwhelms everything else.”
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So, let’s begin by asking, ‘what is a defect’?

There can be many definitions – broadly can be thought of as some sort of error in 
your product.

According to the International Software Testing Qualifications Board (ISTQB), there 
are four levels of defect severity.

The first is a critical defect that results in total stoppage of usage. There is no ready 
workaround for a level 1 defect. Example is unsuccessful installation, complete failure 
of some feature.

The next level is a major defect – which affects some major functionality or major 
data. There is a workaround – but the workaround is not obvious and difficult. For 
instance, it may require using a different module or installing new software.

Next are minor defects which affect some minor functionality or non-critical data. 
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These typically have an easier workaround. For example, using the keyboard shortcut 
to save is broken – and so you have to use the menu.

Lastly are cosmetic or trivial defects. These don’t really affect functionality or data. 
They don’t really need a workaround – they’re just inconvenient. An example would 
be like inconsistent layouts or spelling mistakes.

Not all defects are equal. Most defects are found and fixed during development or 
testing, before a product is delivered. 

In evaluating software quality, it’s useful to focus on those defects that are found by 
the customer. These are called customer found defects (CFD’s for short).

A 2014 study at Avaya (part of AT&T) tried to quantify customer found defects in their 
system. They used this definition, which is typical for defining CFDs.

Look at only those defects that were found by customers in the field, and have been 
through several levels of screening, before being elevated to the development group 
and were severe enough to be classified by the development group as a software 
defect.
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This figure is taken from the Avaya study. They found that less than 1% of customer 
service requests materialized as CFD’s.

They looked at every service request raised by phone, through their website, or 
through chat. Almost everything is handled by service technicians. About 4% of 
requests are escalated to the product engineers , and only about 1% are classified as 
CFD’s by the software engineers.
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Another important aspect to consider when evaluating quality is the size of the 
project you’re working on. For instance, to measure the quality of your output, you 
might want to consider defects per unit size, rather than just looking at defects alone.

So, how can we measure program size?

Although it has some significant limitations, lines of code is still the primary metric for 
program size.

One major issue is that its very hard to compare projects using different languages in 
terms of lines of code. In most cases, a project written in C or COBOL is just going to 
use more lines of code than a project with similar functionality written in python or 
lisp or other HLL.

However, within a particular language, productivity in lines of code is relatively 
constant – but it can vary from person to person.

Other issues:
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Using LOC as a proxy for productivity is a problem (only about 30% to 35% of effort is 
spent writing code)
Skilled developers can produce same functionality in fewer LOC
Lack of counting standards: count braces? Whitespace?

To address some of these issues, the function point metric was introduced at IBM to 
measure functionality.

Basically, the development team classifies the functional user requirements for the 
project and assigns them a number of points based on their complexity.

The approach is standardized, but how many points a particular functionality is worth 
is still subjective.

People have found that function points correlates with lines of code – but people still 
use it because they make it much easier to compare productivity across languages 
and projects.
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Now – another issue with metrics – as pointed out by this comic – is that certain 
metrics can be subverted.

For instance, if you’re using lines of code to measure productivity, your developers 
might decide to write their code in a verbose style to make themselves appear more 
productive.

Or – for instance – as in this comic – developers might focus on the quickest bug fixes 
rather than the most important if you specifically measure their output in terms of 
the number of bugs they’ve fixed.
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Next, I want to discuss large study on software quality by Caper Jones.

Capers Jones is the VP and CTO of Namcook Analytics, which is a company focused 
primarily on the study of software quality.

Jones collected data from more than 13,500 projects over almost 20 years.
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The study considered a number of different metrics to assess software quality. These 
are listed on the next couple slides.

Defect potentials: total number of different types of errors in the software
Defect Discovery Efficiency: % of defects discovered before release
Defect Removal Efficiency: % of defects removed before release.

Also recorded defect severity levels of each defect (similar to the severity levels we 
discussed earlier).

Jones says that DRE is the ‘most powerful quality metric in the industry’.
Very simple to calculate: defects found / defects present (estimate based off 
published data).

Ideally, you should have over 90% of your bugs – but this is very hard to do without 
special training and static analysis tools.
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They also considered cost metrics for dealing with certain types of defects.

The standard cost of quality assessed the cost of preventing, finding, and dealing with 
failures due to defects.

The revised software cost of quality considers the cost of prevention along with the 
cost of removing the defect.

And they also looked at the error prone module effort. Studies have shown that most 
of the bugs in the system come from a very small number of modules or files in your 
source code. So, the cost associated with identifying and repairing these error prone 
modules is also recorded.
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Jones also discusses some economic definitions of software quality.

I include this slide to point out some terms you will see in the next few slides.

The first is technical debt. This is the assertion that quick and careless development 
of poor quality software will often lead to many years of expensive maintenance and 
enhancements – which you could have otherwise avoided had you invested a little bit 
of money and effort into software quality.

Related to this technical debt idea are the “cost of quality” – which measures the 
overall cost of defect prevention and (pre- and post-release) defect repair.

Also related is the “total cost of ownership” a product – that is the sum cost of 
development, enhancement, and maintenance of the software since day 1.

13



OK – so if you want to build high quality software – you need to know how to 
measure it.

Unfortunately, there are a number of issues with methods that have been used to 
measure software quality in practice.

Cost per defect is the amount of time, money, resources you spend fixing each bug. 
Some would say having a low cost per defect is a good thing. But why might cost per 
defect not be the best measurement of code quality?

(Buggiest software has the lowest cost per defect because code with a lot of bugs will 
have many that are easy to fix). As you fix them, cost per defect will increase because 
the last bugs you fix will always be more subtle.

There are issues with technical debt because it ignores costs that are not part of a 
completed project – it covers less than 30% of total cost.
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Lines of code can really vary from language to language – so it’s not good to use lines 
of code in quality comparisons across languages.

Also, Jones points out that using lines of code ignores non-coding defects. According 
to Jones, requirements and design defects outnumber coding defects – and most 
companies do not measure those defects.
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This example shows how using lines of code in a quality comparison can harm high-
level languages.

Say, we have two applications, one written in Java and the other in C. The application 
in Java only has 50K LOC, while the C application has 125K LOC.

Both applications have the same number of functions points – so they do roughly the 
same amount of functional work. In the Java app, we found 500 defects that cost 
$70K to fix, and in the C app, we have 1250 defects that cost $175K to fix.

If we look at the cost to fix these defects per line of code – then the cost appears the 
same.

But if you look at the cost per function point – which is what you really care about –
the cost with the Java app is much lower. We save about $100K using Java.
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Now, let’s get to some results from the study.

This table shows benchmark data for various projects with a different number of 
users and a different number of function points. Remember function points are just a 
metric related to the functional requirements that measures the total size of the 
project.

On the left y-axis, we have the number of users, and on the x-axis we have the 
number of function points.

So, this means, that with 1000 users and 1000 function points, the users will find 27% 
of all post-release bugs in your software.

Notice with only 1 user with a project with 1000 FPs, the user will only report 12% of 
all bugs. If you have 10M users with 1000 FPs, the users will report more than 90% of 
all bugs in your software.
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This slide puts some hard numbers on the assertion that most bugs are non-coding 
bugs from early in the software development process.

The study looked at industry data on the origin of various software bugs.

At IBM, they found that 45% of all defects came from the design phase. At SPR, 20% 
came from requirements, while another 30% came from the design phase.

The bottom line is that more defects are caused by issues in the earlier stages of 
software development.

Earlier bugs also happen to be the bugs that are more expensive to fix.
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This slide looks at the total number of defects per function point at different stages of 
the development process.

So, there are substantial defects introduced in the coding phase, but it’s easier to 
remove those errors prior to release (the average development team removes about 
95% of defects introduced in the coding stage prior to release).

However, there are more defects introduced in these non-coding phases of 
requirements and design – and these are harder to detect and remove prior to 
release.

In sum, coding defects are only about 35% of total defects, and only about 12% of 
delivered defects.
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The study is able to make a number of interesting observations.

Individual programmers are typically very bad at finding defects in their own 
software. An individual programmer finds less than 50% of the bugs they create in 
their own code.

Normal testing (including unit tests, function tests, system tests, etc) is < 75% 
efficient at finding bugs. So, you will release code with about 25% of the bugs still in 
the code.

Design reviews and code inspections alone can find 65% of all bugs – in the best case 
– these practices can find 95% of bugs.

Static analysis is similar.

Combining the practices of design and code inspections, static analysis, and testing 
can lower costs and reduce development time by more than 20%, and it can reduce 
the total cost of ownership (including defect repair and maintenance) by more than 
45%.
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So these ftables show specifically how many bugs you should expect to find with 
different combinations of using four different defect removal techniques:

Design inspections
Code inspections / static analysis
Quality assurance
Formal testing

These items show the defect removal efficiency if you do each of these practices in 
isolation.

So, if all you do is formal testing, you should not expect to find much more than half 
the bugs in your software.

The best practice to do alone is formal design inspections, but even then, you’ll only 
find about 60% of your program’s bugs.
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Doing these techniques together in a synergistic package yields much better results.

This slide shows DRE with different combinations of these activities.

If you do design and code inspections, as well as static analysis, as well as formal 
testing, you will find about 97% of all defects in your software prior to release.
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So, the main conclusion to take from this study is that no single quality method is 
adequate by itself.

Combining formal inspections, static analysis, and testing can be quite effective at 
improving defect removal efficiency.

And ensuring quality in your software pays off. You’ll get a $15 return on investment 
for each $1 spent. And high quality benefits everyone. It puts less strain on your 
product schedule, it can increase productivity, and is more beneficial to users.
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In February 2014, Apple revealed and fixed an SSL (Secure Sockets Layer) vulnerability 
that had gone undiscovered since the release of iOS 6.0 in September 2012.

It left users vulnerable to man-in-the-middle attacks thanks to a short circuit in the 
SSL/TLS (Transport Layer Security) handshake algorithm introduced by the duplication 
of a goto statement.
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Today we’re going to discuss static analysis.

Static analysis are great tools for improving your code without too much effort. You 
can run static analysis tools similar to how you run your compiler on your source 
program.

You don’t need much understanding of the source code to run static analysis on it –
you can just run the tool and it will start giving recommendations.

In addition to finding potential errors, they can also tell you when you’re program 
does not conform to a specific style or violates some reasonable programming 
practice.

While SA is not a replacement for testing, it is certainly a useful supplement. It can 
help you find problems you might not detect in testing – or show you paths of your 
code that you haven’t covered with your tests.

A major issue with SA is the problem of false positives. Since static analysis makes its 
recommendations without program input, there are many cases where it might 
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report a problem that is not really a problem at all because of the nature of your 
input. Finding a balance between reporting the most important issues and 
overwhelming the user with false positives or trivial issues is a challenge.

Additionally, there are many issues that static analysis is not able to solve. For 
instance, run-time errors such as null pointer dereference are difficult for SA’s to 
detect. Thus, you should always use SA in conjunction with testing and perhaps 
dynamic analysis.

As we’ll see, there are a variety of SA tools – each of which focuses on specific kinds 
of defects. Depending on your project, you might want to combine multiple tools to 
get the best result.
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Now, despite it’s advantages, SA is not a panacea.

SA can tell you whether your code violates some specific rules or practices and give 
recommendations, but it does not ensure your code is correct or good quality.

So, it’s not a replacement for good design, regular design and code reviews, and 
standard testing techniques. It can be a useful tool to augment these practices.

It also cannot find more sophisticated errors (such as performance or memory errors) 
that can only be detected by running or simulating the code with dynamic analysis.
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Let’s look at a few different static analysis tools.

FindBugs is a static analysis tool that examines Java bytecode (not the raw source 
code)
It searches for a large number of patterns in your bytecode to find ones that lead to 
common mistakes. FindBugs can detect issues such as “return value of method 
ignored”, “null pointer dereference”, and “redundant comparisons to null”

Jlint does data flow analysis and constructs the lock graph to find inconsistencies and 
synchronization problems in your Java programs. It might find methods that can be 
called from different threads, locks that are held but never released, or locking 
patterns that might lead to deadlock (e.g. lock A is requested while holding lock B, 
while another thread can hold A and also be requesting B)

PMD stands for programming mistake detector. PMD can find some of the bugs 
detected by FindBugs – but it operates at the source code level – not at the bytecode 
level. It also tries to simplify your code by searching for common mistakes or patterns 
that can complicate it (such as overcomplicated if statements, dead code, duplicate 
code, and empty try/catch/finally and switch blocks).
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The ESC/Java and ESC/Java2 tools attempt to find common run-time errors in Java at 
compile time. These tools use an extended static checking approach, which you can 
think of as an extended form of type checking. It aims to identify errors such as divide 
by zero, array out of bounds, integer overflow, and null dereference.
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Now, I want to show you a few examples of the types of things you can find with 
static analysis.

Here we have two bugs.

Which is worse?

(on the left) set x to 4 when x != y, but we set it to 4 when x==y and y!=3
(on the right) null pointer dereference
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Left is harder to detect with testing. SA can alert you and avoid issues later.

Right may always cause a critical failure, but will likely be detected in testing.
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Where are the bugs in this code?
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y never used.

Method result ignored. In this case, read returns the number of bytes read or -1 if 
there is no more data to be read.

Don’t use == to compare strings. (== checks if they are the same object, need to use 
.equals to check if two different objects have the same value).

May fail to close stream on exception (x is never closed).

Array index possibly too large. (i goes from 0 to length – code doesn’t say the size of 
b).

Possible null dereference (don’t know the size of b).
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While it can be useful, there are a number of limitations to static analysis.

False positives:
Tool will often report issues that aren’t really bugs. Have to manually review. 
Sometimes too many warnings to sort through.

False negatives:
Many bugs the tool won’t report. Some tools (like ESC/Java) intentionally limit what 
they report so they don’t show you too many false positives. Striking the right 
balance is a challenge for SA tools.

Another issue related to false positives is that of harmless bugs. Many bugs will be 
low-priority problems. (for instance – unused variable or dead code – might be 
removed by compiler anyway). Might not be worth fixing. Clutter the output of the 
tool – makes it less useful.

33



Next, let’s talk about coverity.

Coverity is a brand of software development products from Synopsys. Coverity
originated from a group out of Stanford who were building static analysis in their 
research lab. Today, it is one of the most comprehensive sets of static and dynamic 
analysis tools available. It has been quite successful on the market and was acquired 
by Synopses in 2014 for $350M.

Quote from creator: “The tool, like all static bug finders, leveraged the fact that 
programming rules often map clearly to source code; thus static inspection can find 
many of their violations.”

The slide lists some of the different capabilities of coverity. Many of these are 
standard static analysis – but having them all in one tool that works with many 
different compilers across a variety of languages makes it a very powerful product.
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Now, I’m going to show you some example use cases of the coverity checker.

First, however, let’s discuss a little more about the types of issues coverity and other 
SA tools can detect.

As I mentioned before, one issue with SA is that it sometimes often reports many 
trivial or harmless bugs and false positives.

So, we’d like to be able to quickly identify those defects that are going to be severe in 
nature so that we can focus our efforts. These severe defects are also called critical 
defects or critical impact defects.

There are a number of criteria that static and analysis and testing tools can look for 
when trying to determine whether a defect is critical impact or not. SA tools like 
coverity use these criteria to prioritize the reporting of certain types of issues.

The first criterion for critical defects is whether the error is on a critical execution 
path. Since SA does not have access to run-time information, we would need to use 
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some sort of dynamic analysis or execution traces to determine which code paths are 
critical.
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Next, a defect is critical if, when it is encountered during execution, the result of the 
defect is severe.

For instance, the defect might cause a crash or result in hanging or large delays due to 
infinite loops.

Race conditions that cause inconsistent behavior as well as performance and memory 
issues are classified as critical impact.

Some of these things, such as infinite loops or memory leaks, are sometimes easy to 
detect statically.
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Another criterion that might be used is that some errors correspond to unique 
patterns that do not typically occur, but when they do, they are likely important.

An example of this might be when you try to use a singleton object as an array or do 
pointer arithmetic on it.

For instance,

void foo(char **result) {
*result = (char*)malloc(80);
if (...) {

strcpy(*result, "some result string");
} else {

...
result[79] = 0; // Should be "(*result)[79] = 0“

}
}

void bar() {
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char *s;
foo(&s); // Defect reported here

}
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This figure shows the proportion of defects found by different checkers in the coverity
and FindBugs systems across a range of software projects.

Using the critical-impact criteria, Coverity and FindBugs attempt to categorize defects 
as high-impact, medium-impact, and low-impact. Defects categorized as high-impact 
are more likely to be critical.

In this figure, checks that correspond to high-impact defects are shown in red, while 
checks that correspond to medium impact are shown in blue. Even if a defect is 
categorized as medium impact, it might still be critical, depending on how it affects 
the execution.

The most commonly reported defect is GUARDED_BY_VIOLATION. This checker infers 
guarded-by-relationships to track when fields are updated with known locks. 

Example:

lock(myLock) {
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myData++;
myData--;

}
…
myData++;

GUARDED_BY_VIOLATION, along with RESOURCE_LEAK, and REVERSE_INULL make up 
73% of all reported defects. Of these most common defects, only RESOURCE_LEAK is 
classified as high-impact.

UNINIT looks for variables that are used without being initialized.

CTOR_DTOR_LEAK is where a constructor allocates memory and stores a pointer to it 
in an object field but the destructor does not free the memory

struct A {
int *p;
A() { p = new int; }
~A() { /*oops, leak*/ }

};

OVERRUN_DYNAMIC searches for array out of bounds errors.

Let’s take a look at what some of these other checkers do.
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The resource_leak checker attempts to check if program variables go out of scope 
while you still “own” the resource.

It checks for two main types of leaks. The first is file descriptors and socket leaks. So, 
basically when you open a socket, pipe, or file, but forget to close it.

These are dangerous leaks because they can cause crashes, can be exploited for 
denial-of-service, and they may restrict your process from opening new files. Most 
OS’s put a limit on the number of file descriptors you can have open for each process 
– so leaking file descriptor and socket descriptors will cause problems.

Also, just like with memory, if a FD leaks – there’s really no way to free it until the 
process is completed

The other type of leak this checker detects is memory leaks. We’ve all seen memory 
leaks.

Very common on error paths.
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Even small leaks can be problematic for long-running processes.

And leaks can also cause security issues. If you have a leak in program that an 
adversarial user can run, they could use it as a denial of service attack on your 
system.
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Example shows the common case of not freeing on an error condition.
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Next, is the reverse_inull checker. This was the third most common type of defect 
reported by coverity and findbugs.

So, basically, this checker checks for when you have a null check after you’ve already 
dereferenced the variable. It gets its name because the null check and dereference 
appear to be reversed in the code.

This is obviously important because dereferencing a null pointer will cause the 
program to crash, so you always want to make sure you do the null check before you 
dereference. Even in a high-level language, if you were to catch an exception for a null 
pointer, there’s typically not much you can do at that point except crash.

There is a chance that this checker could report a significant number of false 
positives. In many cases, we have extra information so we know that a particular 
pointer is not going to be null. In these cases it’s best to just remove the check 
entirely – or if it is useful to check – just move the check before the dereference.

Alternatively, there are options to suppress events with certain checkers by 
annotating your source code.
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Microsoft has always prided itself on its testing practices.
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When faced with a mechanism --be it hardware or software-- one can ask oneself 
"How can I convince myself of its being correct?" As long as we regard the 
mechanism as a black box, the only thing we can do is subject it to all possible inputs 
and check whether it produces the correct outputs. But for the kind of mechanisms 
we are considering this is absolutely out of the question.

I have a pet example to demonstrate this. At my University we have a machine and 
one should for instance like to know, whether the fixed point multiplication 
instruction works properly. The machine has a rather short word length of 27 bits, as 
a result there are only 254 different fixed point multiplications possible. So, why not 
try them all? With 214 multiplications per second, 254 multiplications = 240 sec = 1012

sec. = 107 days = 30.000 years! It takes 30.000 years to have all possible 
multiplications performed just once.

One of the consequences of this number is that in the whole life time of the machine, 
the number of fixed point multiplications actually performed by our machine is a truly 
negligible fraction of the set of possible multiplications. From a simple-minded point 
of view we are only interested in the correct execution of the tiny set of 
multiplication the machine is actually called to perform. But because in programming 
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we think not in terms of numerical values but in terms of variables, we have 
abstracted from the values actually processed by the arithmetic unit and we are only 
allowed to make this abstraction when the multiplier would do any multiplication 
correctly.

I make this point because it is often not realized that the at first sight extreme and 
ridiculous reliability requirements imposed by us on the hardware is a direct 
consequence of the fact that without it we could not afford this vital abstraction. 
Another consequence of the number of 30.000 years that sampling testing is 
hopelessly inadequate to convince ourselves of the correctness even of a simple 
piece of equipment as a multiplier: whole classes of in some sense critical cases can 
and will be missed! All this applies a fortiori to programs that claim to cope with 
many more cases and take more time for each single execution. The first moral of the 
story is that program testing can be used very effectively to show the presence of 
bugs but never to show their absence.
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Testing is a process for finding errors (semantic or logical) during execution.

We test code that we have already found to be syntactically correct – using a 
compiler. Static checking is performed before hand.

Testing does not improve quality. We can use tests to measure quality. We can find 
errors with testing – and it might lead us to eliminate some errors – but testing alone 
does not improve quality.

If you don’t find errors, that does not mean your code works! You likely need more 
effective tests.
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You should expect testing to absorb a significant portion – if not the majority – of 
your development costs. Studies estimate testing requires 40% of development costs 
for information systems, in general, and 80% of costs for real time embedded systems 
(because you have to test the software for additional constraints, which require 
additional testing).

However, as you might expect, testing receives the least amount of attention during 
software development and often does not receive enough time or resources – which 
can result in the release of a defective product. The people developing the software 
are often responsible for testing the software as well – and they might have to 
abandon their testing efforts when something on the project changes.

One of the main reasons for these problems is because, naturally, testing is typically 
at the end of the development cycle. Since it occurs at the end, people often rush 
their testing efforts as other activities absorb their time of the project.
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One question you should always ask yourself for any software project you work on, is 
‘what is the appropriate amount of testing that we should do for this project?’

The answer depends on the aspects of your individual project and the contexts in 
which your software will be used.

For example, consider you are testing a program that performs some mathematical 
calculations. In different contexts, you might test this program very differently.

For instance, if you’re developing the software to be used as part of a computer game 
– maybe you don’t care as much about accuracy – but performance is very important. 
So, you would write tests that make sure your software is accurate enough – but also 
ensure that you don’t drop under a specified frame rate.

If you’re developing the software as part of a prototype, you probably don’t care as 
much about performance, but you might have other concerns, such as user interface 
and functionality.

In other contexts, such as software for a medical device, or some other mission 
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critical device, accuracy and reliability may be extremely important, so you would 
need to test the software very carefully to ensure these properties.

For each context, you would need to consider different questions, such as “what is 
your mission?”, “how buggy will you allow your software to be?” “how much will you 
worry about different properties – such as performance, precision, UI, and security”. 
And you should also consider how much information will you record during the 
testing process. Do test results need to be diligently recorded? Or can you simply 
record whether or not the tests passed? 
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As with other aspects, there are certain properties that are desirable from a testing 
POV.

This slide gives a partial list of some of these desirable properties.

The power of a set of tests refers to their ability to find problems in your code.
Validity is whether the problems found by the tests are actual problems – that is – the 
test does not report a lot of false positives.
Tests are valuable if they reveal things that you and your customers would want to 
know.
A test is credible if it mimics some scenario that is likely to be encountered in the 
field.

Some other important properties are test independence (or non-redundancy in your 
tests) as well as repeatability and maintainability of your tests.

A test or set of tests have good coverage if they exercise the product in all the 
different ways it might be used in practice.
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It’s also important to structure your tests so that their results are easy to collect, 
explain, and interpret.

And, ideally, good tests will have all these properties, but also require relatively low 
development effort, execution time, and opportunity cost.

Obviously, writing tests with all of these properties might be difficult or infeasible 
depending on your project, but you should evaluate your tests based on these 
properties.
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There are a wide range of strategies you can use to test your software. This slides 
shows few important classes of testing strategies.

The first is black box or functional testing. Black Box testing refers to testing the 
functionality of a system, but not it’s implementation. That is, you treat the 
implementation as a black box as you test the software’s functionality.
If you are testing individual modules, you could test using only knowledge of their 
interface, but not the code that implements them.

For black box testing, you base your tests on your requirements and how you expect 
users will use the software. This sort of testing can often help expose discrepancies in 
your requirements or functional specifications. It also has the added advantage that 
tests can be done independently of the software developer – perhaps by another 
employee or team working in parallel.

Alternatively, we can also conduct white box or structural testing of the code. This 
just means you write tests for your product with knowledge of or in consideration of 
its implementation. So, for individual modules you can write tests considering the 
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actual inner workings of the module (what might be in the .c or .cpp file and not just 
the .h file).

One nice thing about white box testing is that – since you have access to source code 
– you can ensure better coverage of statements in your code and make sure you have 
tests that test each branch or condition in your code.

Regression testing is another form of testing that can include either black box or 
white box tests. Regression testing just means you repeat all of your tests every time 
you update or modify the system. So, when you add a new feature, you not only run a 
test to evaluate the new feature, but you also re-run all of your old tests to make sure 
none of them broke. In this way, you can ensure that you can continuously deliver 
working code with each new feature.
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Black Box testing is beneficial because it allows you to test the product from the POV 
of the customer. However, there are a number of limitations to strictly black box 
testing your product.

For instance, black box tests are typically based off the requirements you and your 
customers have agreed upon for the system.

However, these requirements may be incomplete and may not actually describe all 
the functionality you should test. This can make writing black box tests that actually 
test all the different ways your customers might use your software very difficult.

Additionally, various design decisions might be left to the implementation. If you’re 
unaware of these decisions, you might miss some important test cases. For instance, 
maybe you’re developing a calculator – and you know that in most cases – the user 
will only want to calculate with relatively small integer values. So, you use a 4-byte 
‘integer’ type to represent numbers in the range -2^31 to 2^31-1. However, if the 
user inputs a very large (or very negative) integer outside this range, then you have a 
different system for representing arbitrarily large integers. If you’re not aware of this 
design decision, you might not test integers outside the small integer range.
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To address these limitations, it is recommended that you supplement black box 
testing with white box testing so that you can evaluate your product from the user’s 
point of view – but also in consideration of all the design decisions hidden in your 
implementation.
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This figure shows a number of different types of testing and what each test will 
evaluate. We have seen some of these tests earlier when we discussed V-Processes.

The different types of tests often correspond to different stages of planning or 
development.

You need to conduct explicit tests to evaluate the implementation, design, 
functionality of your system, and whether or not it meets the customer’s needs. 
Simply testing the implementation of individual methods in your code will not ensure 
that customer’s will be satisfied with your product.
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Let’s discuss a little more about integration testing.

You typically do unit testing first and follow it with integration testing. Unit testing 
tests the individual functions and modules in your code separately.

Once you are sure the individual modules or working properly, you test them 
together to ensure they work together properly. This is the idea behind integration 
testing.

Writing good integration tests can be challenging – especially for large software 
projects that have many different components that might interact. You often cannot 
test all interactions – so you have to choose a representative subset.

Also, integration testing tends to reveal design errors rather than integration errors. It 
is at this stage where you may realize that two components that you thought could 
work together might not work together – or you may realize you need additional 
methods or modules to accomplish certain tasks.
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There are two main types of integration testing: bottom up and top down (also others 
– but would be variations of these).

In bottom-up integration testing, you test all the bottom-level units in your code that 
do not depend upon or call other parts of the code you test the higher-level units.

So, for instance, in this dependency graph, P might call or depend on Q and R, Q 
depends on E, and E and R both depend on D. So, first we would test D. When we 
know D works, we test both E and R (with D). Then, we can test Q (with D and E). 
Then, finally, we can test P knowing that Q, E, R, and D have been tested and should 
work at this point.

For bottom-up testing, you need some sort of driver to simulate the higher-level units 
during your testing of units at the bottom of the dependency graph.
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Top-down integration testing is just the opposite of bottom-up.

With a top-down strategy, we test the units at the top of the hierarchy first, and then 
proceed to test the lower level units step-by-step afterwards.

With this approach, you need stubs to simulate the operation of the lower-level units 
in the dependency graph.

In this example, we would test A first and use stubs for units B, C, and D as we test A.

Then, when we know A is working, we can move to the next level and test A + B + C + 
D, and use stubs for the lowest level.

Finally, we test the whole system together.

Add a slide here:

After integration testing, comes system testing, where you test functional 
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requirements, and after system testing, you could do acceptance testing to test 
whether or not the system meets the users requirements for acceptance. You can 
think of these tests in a hierarchy from most fine-grained and specific to 
implementation, to more abstract up to customer requirements.

Acceptance Tests
^
^
System Tests
^
^
Integration Tests
^
^
Unit Tests
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Coverage is the extent to which a given verification activity has satisfied its objectives.

Most often when we discuss coverage, we are talking about what percentage of the 
code or functionality a particular set of tests is able to evaluate.

The importance of coverage is illustrated by my friend Gilman Stevens, who had 
helped manage the development of communications software at Nortel and Avaya. 
He writes in an email about how, when he was at Nortel, they had used a code 
coverage tool in the field to evaluate how much of their software was actually being 
tested at the factory.

He found that only about 1/10 of 1% was being tested before it was released. And the 
customers were not satisfied with those releases. But, after they changed their 
testing tools based off the feedback from this study – they were able to test about 1% 
of all the code the customer’s were using in the field. This 10x increase in coverage 
yielded much higher quality in the customer’s eyes.

Using this coverage tool, they also found that their new code was almost never the 
cause for complaints. Rather, the new features could have broken some existing 
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features the customer really cared about – which made them upset. So, in conclusion, 
regression testing was more important than actually having the new feature 
according to their customers.
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Let’s first discuss the concept of coverage in terms of functional testing.

Remember, with functional testing, we want to test whether a particular piece of 
software performs the correct function for each possible input value.

So, suppose we are writing a test to test a function that takes a list of integers and 
returns the maximum element in the list.

To ensure good test coverage, we might say, well, let’s generate many different 
random lists of integers and compute their maximums. Then, we can manually 
evaluate if we got the right answer each time.

In addition to being time-consuming, that might not be the best strategy. Often 
times, in software, the tests where your code will break are those cases that are the 
typical input case. For instance, with this problem, we might want to test for empty 
lists or lists with non-integers to ensure the function behaves appropriately.

So, we need to make sure we include those other types of inputs that aren’t normal 
in our test set.
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So, for instance, consider that we test the function with this set of lists. It seems like 
the function works every single time.

Would you consider this to be a good test set for this problem?

What other inputs would you give to this function to ensure good coverage of the 
method’s functionalities?
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Coverage is also important in the context of behavioral testing. Behavioral tests aim 
to ensure the software behaves correctly given different inputs.

So, for instance, take the example of a program implementing a stack data structure.

To test this program, you might simply just try pushing and popping items off the 
stack randomly. Do that enough times and call it done.

The downside of this strategy is that you might miss the testing of some important 
states in your program. For instance, you want to make sure that you test error 
conditions, such as  trying to insert when the stack is full and trying to remove when 
the stack is empty.

So, to ensure good coverage with your behavioral tests, you need to consider each 
state that your program can be in. In this example the stack might be in the partially 
full state, but it also might be in the empty state or in the full state. You need to write 
tests that evaluate each state of the program with different inputs.
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Coverage can also enable much more effective white box or structural testing where 
you test in consideration of the structure of the source code.

For instance, consider testing this equal function. (describe it)

A naïve way to test this code might be assign random values to x and y and ensure 
that it always returns the correct answer.

But – if you’re just picking numbers randomly, there might be low probability that the 
numbers actually equal – so you might not test the first branch in the if statement. A 
better set of tests will cover every branch of the source code.

Ideally, you would have at least enough tests to cover every branch in your code.
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This is the idea behind structural basis testing.

Consider you wanted to generate tests to cover every single branch in your source 
code.

What is the minimum number of tests you would need?
1 for the straight path and add 1 for each branch

Consider the midval program (describe it)

We have three if statements – so the minimum number of tests is 1 + 3 = 4

Now choose the cases to exercise the paths?

Is this program correct?

We didn’t test for equal values – consider ‘3 3 2’ – depending on how median is 
defined – may not be right.
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Relatedly, we have the concept of boundary analysis.

Here, for each boundary or check in your code, we generate tests for three cases:
1 for each side of the boundary
And 1 for if the input values are on the boundary.

Boundary checking would cover the case that inputs are equal.
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Next, we can also use program dataflow to generate tests with good coverage.

The idea here is to ensure that all program variables lead a normal life.
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Some potential defects that would be found by data flow testing (read them).
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To ensure good coverage, we would want to generate tests that cover all possible def-
use paths for each program variable.

So, we generate tests that test each path from the definition of a variable to each use 
of that variable.

Consider this example.
Structured basis testing only requires two cases: (true, true) and (false, false)

Def-Use Testing requires four cases (true, true): def1-use1, (true, false): def1-use2, 
(false, true): def2-use1, and (false, false): def2-use2
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There are a variety of open source and proprietary tools that can help you the 
effectiveness of your tests using coverage analysis.
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This screenshot shows the output of a coverage tool for Java.

It shows the portion of lines and branches covered by a particular test for each 
package in the source code.
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We can also view this information at the level of individual classes.
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And even at the level of individual source files. Lines highlighted in red were not 
reached during the test.

69



Today, I want to talk about another type of code coverage that is often used in safety 
critical software and that is modified condition / decision coverage or MC/DC.

The basic idea behind MCDC is that if a choice can be made in your code, then all the 
possible factors (or conditions) that can contribute to that choice (or decision) must 
be tested.

It’s been shown to be a very powerful testing technique that can uncover important 
errors that would go undetected with other techniques. I’ll expand more on this point 
a bit later.

MCDC was designed to be used with safety critical software or software that 
absolutely could not fail. For such software, some people used to advocate for 
exhaustive testing of all decisions in the code. That is, for a decision with n inputs, 
you would test all combinations of all inputs to ensure the correct outcome was 
always produced. Obviously, the problem with exhaustive testing is that it can 
produce an exponential number of tests.

One of the main advantages of MCDC is that the number of tests required is linear 
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relative to the number of inputs to each decision in your code. So, for instance, in a 
decision with n inputs, the minimum number of tests required by MCDC is n+1. This is 
much better than the exhaustive where the number of tests is 2^n.

MCDC testing is widely used in practice for safety critical software. In fact, the FAA 
mandates MCDC testing for avionics software. This code can be quite complex – and 
may contain many complex Boolean expressions that would be impractical to test 
with exhaustive testing.

However, MCDC testing is quite expensive compared to some of the simpler coverage 
analysis tools. It does require much more testing than some of the other approaches 
we’ve discussed. In the development of the Boeing 777, which was the 1st

commercial airplane with fully electronic flight controls, the MCDC testing cost more 
25% of the aircraft’s total development budget.
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To better understand MCDC, we need to discuss a couple other types of coverage.

Condition coverage requires that each condition in a decision must take on all 
possible outcomes at least once.

Suppose we have code that makes a decision based off the condition (a|b)

Now, exhaustive coverage would require that we test all possible combinations of a 
and b

a  b 
---------
1 T  T
2 T  F
3 F  T
4 F  F

But condition coverage just says that each condition must take on all possible 
outcomes at least once. So, we only need to include tests 2 and 3 because a is true in 
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2 and false in 3, and b is false in 2 and true in 3.
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So, condition coverage allows for fewer tests than exhaustive coverage.

But, the downside of condition coverage is that the decision might not take all 
possible outcomes with these tests. So, you might miss testing some important parts 
of your program.
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Another type of coverage is decision coverage.

Decision coverage just says that you need a test to test all possible outcomes of each 
decision.

If we consider again (a|b), we only need to include 1 test where outcome is true and 
one test where the outcome is false.

So, we could choose tests 2 and 4 to ensure decision coverage.

However, the downside here is that you might not test the effect of all the conditions 
on each test. For instance, these tests do not ensure that the program will behave 
correctly when b is true.
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To overcome the drawbacks of condition coverage and decision coverage, we can use 
modified condition / decision coverage.

There are four criteria for MCDC coverage. We need to run enough test cases to 
ensure that:

Each entry and exit point is invoked
Each decision takes every possible outcome
Each condition in a decision takes every possible outcome
Each condition in a decision is shown to independently affect the outcome of the 
decision.

Now, you might think we only need the first three. Why do we need to make sure 
that we have test cases where each condition in a decision independently affects the 
outcome? The basic idea is that, in many cases, some conditions of a decision may be 
masked by the other conditions. With MCDC, for each condition, you hold all the 
other conditions fixed and choose test cases where changing the condition will affect 
the outcome of the decision.
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This property makes MCDC much stronger than decision coverage or condition 
coverage alone.

Let’s consider again the example of (a|b) as input to some decision. We need to 
choose test case 4 to test the false outcome.

Now, for the true outcome we have three choices. We only need to choose tests 
where flipping the value of the condition independently affects the result of the 
decision. So, for instance, If we hold a fixed at False, then flipping b affects the 
decision (so we need to choose tests 3 and 4 to cover that case). Holding b fixed at 
false, we see that flipping a affects the decision (so we need to choose tests 2 and 4 
to cover that case). In this case, we don’t need test 1 to ensure MCDC.
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Let’s do another example with a basic Boolean operator.

Suppose we have the condition in our code a&b. To determine the tests we need to 
run for MCDC, we first draw the truth table.

Now, we need to cover all possible outcomes for the decision, so right off the bat, we 
know we need to include test 1 to cover the case where the decision is true. For the 
false case, we have three possibilities. If we were to fix a at true, we see that flipping 
b affects the outcome, so we need to include tests 1 & 2. And if we fix b at true, 
flipping a also affects the outcome, so we need to include both 1 and 3.

In this case, we do not need to include test 4.
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Same example as before.

Must select test 4 to get the case where the outcome will be false.
If we fix a at false, flipping b affects the outcome, so we need to include 3 and 4
If we fix b at false, flipping a affects the outcome, so we need to include 2 and 4.

Do not need to include 1.
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Need to include tests 2, 3, and 4. No need to include test 1.
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Now, what if we want to do MCDC for more complex decisions?

For instance, what about the condition (a&(b|c))?

Determining decision coverage is simple – we know we need to include tests that 
cover each possible outcome of the decision.

But how do we determine if each condition has an independent effect on the 
outcome of the decision? And which tests do we need to include to show that each 
condition has an independent effect on the outcome of the decision?
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As with many things in life, the first step is to draw up the truth table.
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From here, we see that if we flip the value of a between true and false, it often 
affects the outcome of the decision.

Observe that:

If we flip the value of a in test 1, we get test 5, which does lead to a different 
outcome.
If we flip the value of a in test 2, we get test 6, which also has a different outcome 
than test 2.
And if we flip the value of a in test 3, we get test 7 and the outcomes of 3 and 7 are 
different.

So, a independently affects the outcome of tests 1 and 5, tests 2 and 6, and tests 3 
and 7.

If we were to flip the value of a in test 4, that does correspond to a different test (test 
8), but tests 4 and 8 lead to the same outcome. So, in regards to those tests, a does 
not matter.
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Now, the next step is to take those tests where flipping the value of a affects the 
outcome of the decision and mark them in a separate column in the table.

In this column, we just write the corresponding test number for each test that affects 
the outcome of the decision.
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We do the same for input b. For b, we find that flipping b in test 2 gives us test 4, 
which has a different result than test 2.

Flipping the value of b in the other tests does not affect the outcome of this decision.
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And we do the same for c.
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Now, we construct our test set by, for each condition, finding pairs of tests where the 
condition is flipped and the test results in different outcomes for the decision.

So, for condition b, we need to include both tests 4 and 2 because flipping the value 
of b in those tests results in a different outcome.
And, for condition c, we need to include both tests 4 and 3 because flipping the value 
of c in those tests leads to a different outcome.
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So, to test the effects of b and c, we need to include tests 2, 3, and 4.

For a, we have several options. We only need to include one pair of tests that shows 
that a independently affects the outcome of the decision.

So, we could include tests 1 and 5, or we could include tests 2 and 6, or we could 
include tests 3 and 7.
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Continue.
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Now, since 2, 3, and 4 are already required for b and c, we can save ourselves one test 
by choosing either 2 and 6 or 3 and 7
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So, to ensure modified condition / decision coverage with this decision, we only need 
four tests. We could choose either 2, 3, 4, and 6 or 2, 3, 4, and 7.

We could also use 1, 2, 3, 4, and 5 – but this one requires an additional test.
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Lastly, I want to talk about a more recent testing method called combinatorial testing 
that was developed and made popular by Rick Kuhn from NIST.

By thinking of inputs as combinations of parameters, we may be able to significantly 
reduce the number of tests we need to run.
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The basic idea from combinatorial testing is that you often want to test different 
combinations of parameters.

These different combinations of parameters might interact in your code in ways you 
might not have expected and cause errors.

An example of where combinatorial testing would be useful is in ensuring 
configuration coverage.

For many applications, we need to test different combinations of configurations. For 
example, you might have a web app that you want to be able to run in different 
browsers, on different operating systems, running on different types of processors. 
Even more complicated, you might want to be able to use it with different database 
backends or connect to it using different protocols.

Testing all possible combinations of these parameters could be challenging.

One of the most common shortcuts for configuration testing is to use pairwise 
testing. With pairwise testing, you select two input parameters at a time and test all 
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possible discrete combinations of those parameters. So, you might test the app with 
each type of browser on the different operating systems. Then, test the app on the 
different browsers on different architectures. This is faster than testing all possible 
combinations.
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Let’s discuss the rationale behind combinatorial testing.

Combinatorial testing can help detect interaction failures.

An interaction failure occurs when two inputs together interact to induce a failure.

So, for example, in this code, if pressure < 10, we might or might not induce a failure. 
But, if pressure < 10 and volume > 300, we will reach this faulty code and some bad 
things will happen.

The condition “pressure < 10 and volume > 300” represents a two-way interaction 
that can induce the failure.

During testing, you want to include tests that cover this interaction.
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These interaction failures occur due to the way different branches in your code can 
interact.

So, given that these interaction faults can cause issues, an obvious question to ask is 
how often do faults occur due to different combinations of inputs.

Rick Kuhn at NIST studied the root cause of different faults for different kinds of 
applications.

He found that most failures are induced by single factor faults (that is – you only need 
to vary the value of one parameter to induce the fault) or by 2-way interactions (just 
the combination of two factors). Progressively fewer failures are induced by 
interactions between 3 or more factors.

For example, when he looked at software produced by NASA … (read it)
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This figure is from Kuhn’s study.

It shows the percentage of faults induced by tests with different numbers of 
interactions.

So, for instance, with medical devices, you can induce about 66% of failures with only 
1-way interactions (i.e. by varying the value of just one parameter). About 95% of 
interactions are induced by 1-way or 2-way interactions.

And only a very small number of failures are induced by 3 or more interactions 
between program inputs.

This data is interesting for several reasons. We see that faults might be more complex 
for different types of software. For instance, for browsers, generating all tests with 2-
way interactions only induces about 70% of all of the faults.

Perhaps surprisingly, faults for network security software, browser software, and this 
traffic collision software they tested are significantly more complex than faults for 
NASA applications and medical devices.
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So, how could this knowledge be useful for testing?

Well, Kuhn describes this finding as the rationale for the ‘central dogma’ of his work.

He says if all faults are triggered by the interaction of t or fewer variables, then testing 
all t-way combinations of your program inputs can provide strong assurance that it is 
working properly.
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Let’s look at an example of how this dogma could be useful.

For instance, let’s consider text formatting in Microsoft Word.

In Microsoft word, there are 10 different font effects you can apply to your text. Each 
effect can be applied in combination with the other effects. So, for instance, you can 
apply strikethrough along with the shadow effect along with small caps to your font.

If you wanted to thoroughly test your code, you might want to test all different 
combinations of these 10 effects. (how many tests would that be?) 2^10 = 1024

97



But, suppose that you’re not able to test every single combination. Maybe your 
testing budget is limited – or you just don’t want to spend the time running all those 
tests.

Well, because of Kuhn, we know that the vast majority of faults can be induced by 3-
way interactions. So, we decide we only want to look at 3-way interactions.
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Now, the question is, how many tests would it take to test all 3-way interactions?

Well, first we need to determine how many combinations of 3 different effects can 
we have?

This is actually a simple counting problem.

10 ways to pick the first effect, 9 for the second, 8 for the third: 10 × 9 × 8 = 720

But, the order in which you pick an effect does not matter
3 ways to place the first one (1st, 2nd, or 3rd), 2 for the second
3 × 2 = 6

So, 720 / 6 = 120
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OK – so there are 120 combinations of three effects. So, how many tests do we need 
to run for these 120 different combinations?

Well, naively we could compute that we need to run 8 tests for each combination of 
effects. Because each effect can be on or off – there are 23 possible tests for each 
combination of effects, and so we have 120 * 23 = 960 tests we need to run.

But, we could easily construct our tests so that different values for different 
combinations are tested simultaneously. So, basically we have ten possible effects 
that we can modify for each test, so we pack three triples of effects into each test. 
Thus, we can divide the number of tests we have to run by 3.

Now, using this same concept, observe that each test can exercise many different 
triples of parameters.

For instance, if we label each bit as effects a – i, it’s clear that this test tests 0 1 1 for 
the combination a, b, and c, and 0, 0, 0 for d, e, and f, and 0, 1, 1 for g, h, i. But also 
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notice, it tests 1 0 0 for the combination c, d, and e. There are many triples that are 
packed into this one test.

So, now, the question becomes, what’s the smallest number of tests we need to 
exhaustively test all 3-way interactions.
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A covering array is a way of representing all the tests that cover a set of 3-way 
interactions.

Each row represents a test. Each column represents an effect.

In this example, only 13 tests are required to handle all 3-way interactions.
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The only requirement for this covering array is that any three columns contain all 
possible on/off configurations for the three effects.
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The only requirement for this covering array is that any three columns contain all 
possible on/off configurations for the three effects.
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Unfortunately, finding the minimal covering array is an np-hard problem.

Tools exist that are actually pretty good at finding small covering sets (but may not be 
optimal).
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