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Abstract 

Disk drive capabilities and processing power are steadily increasing, and this power gives us the possibility 
of using disks as data processing devices rather than merely for data transfers.  In the area of malicious 
code (malware) detection, anti-virus (AV) engines are slow and have trouble correctly identifying many 
types of malware.  Our goal is to help make malware detection more reliable and more efficient by using 
the disk drive’s processor.  Using the extra processing power available on modern disk drives can provide 
significant advantages in detecting malware including reducing the traditional AV engine’s workload on 
the host CPU by partitioning the workload between the host AV engine and the disk drive, improving the 
detection of stealth malware by providing a low-level view of the system, and recognizing virus behavior 
by observing disk I/O traffic directly.  Several research questions must be addressed before these benefits 
can be realized:  how to correctly partition work between the AV engine and the disk drive processor, how 
to design interfaces between the operating system (OS) or host AV engine and the disk drive that provide 
satisfactory performance without compromising security, and how to recognize malicious behavior based 
on the dynamic analysis of low-level data accesses. 
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1. Introduction 
Malware detectors face three major challenges:  they must 
have false positive rates very close to zero, they must have 
minimal performance overhead, and they must be able to 
detect a large number of known viruses and an unlimited 
number of possible variants.  Moving malware detection and 
response to the disk drive processor offers promising 
opportunities on all three of these problems since the disk can 
analyze all I/O traffic with little overhead.  Current methods 
of virus detection can have an overhead potentially as high as 
129% [21].  In fact, one company is marketing a hardware 
coprocessor explicitly for virus detection to lessen AV 
overhead by using regular expressions along with other 
techniques [20], and Symantec has a patent on a device (or 
software) that can be queried to match a regular expression 
on data and block that data from storage if there is a match 
[7].  These hardware solutions present a bottleneck, since 
higher disk activity will require higher loads on a centralized 
hardware coprocessor.  Our goals are to speedup and improve 
the accuracy of virus detection without requiring specialized 
hardware. 

Recent trends are making storage devices more aware of 
application needs (application-aware) and making devices 
actively perform application-specific code on the storage 
system itself (active storage) [4, 18].  For instance, rather 
than doing encryption in software, Seagate recently 
announced a drive that can perform hardware-based 

encryption [16].  A drive’s processor is about three 
generations behind a high-end modern CPU [1], and it is 
currently underutilized.  Sivathanu et al. model a 
semantically-smart disk using a Pentium III 550 Mhz 
processor, and this trend of increasing processing power 
should continue as Application-Specific Integrated Circuit 
(ASIC) technology continues to provide higher speeds within 
disk power constraints [18].  We have the opportunity to 
have work done in the disk processor nearly for free.  A 
moderate amount of extra computation on the hard drive 
CPU scales better than a larger I/O load, since we can hide 
the processing with the physical data transfers that will incur 
longer mechanical delays.  In using the disk processor to aid 
malware detection, the I/O is already transferred by the disk, 
so the only cost is what we incur by also examining the 
request and data. 

The next three sections explore areas in malware detection 
that significantly benefit from additional processing power.  
Section 2 deals with the issues in partitioning the AV engine 
workload between the primary CPU and the disk drive.  If the 
AV engine can let an active disk perform work on its behalf 
while freeing up the host CPU to service application tasks, 
then this will increase overall system throughput.  Section 3 
discusses augmenting low-level protection of machines from 
rootkits.  Many rootkit detection tools depend on a true low-
level view of the system, and the closest component of the 
non-volatile state of the system is the disk drive.  Our last 
example discusses the dynamic analysis of disk I/O. 



2. Partitioning Workload 
Some of the main actions that an AV engine performs are 
heuristic scanning, signature matching, and emulation [19].  
Heuristic scanning is used to quickly identify traits of a 
program to act as a filter to more expensive scanning 
techniques (like emulation), but the most dominant action is 
simple string matching.  Emulation is also an expensive 
action, and the AV software must be selective on the 
programs it chooses to emulate and how long it performs 
emulation.  On a single processor system, the AV engine 
overhead can cost up to 129% [21].  Although the disk drive 
processor is a suitable place to offload some of the burden of 
an AV engine, we must first address several issues including:  
partitioning the workload between the AV engine and the 
disk processor, minimizing I/O delay, and the interaction 
between the AV and the disk. 

Partitioning malware scanning is especially important if we 
can exploit parallelism for the scanning process.    For this 
design, we envision an active and application-aware disk 
where the disk acts independently of the host AV engine. 

Since we are using a disk processor, we are limited to a small 
cache, typically 8–16MB.  This limits the disk scanning to 
use a smaller signature database.  The size of the Symantec 
AV update executable for October 8, 2005 is 8.86 MB [12], 
but our signatures will be at the lower level of disk blocks.  
We face the challenge of creating small signatures with low 
false positive rates.  While using the disk cache for 
signatures, we will also need to study the trade-off of the OS 
using the disk block cache. 

Some polymorphic malware may be difficult to identify, 
since encryption can be used before writing to the disk.  
Although knowing the content of I/O traffic can be more 
useful, the disk may still identify malware according to the 
location of a written block even if the block is encrypted.  
Some malware can be recognized through simple string 
matching, enabling the disk to recognize the malware 
whenever a known string is written to the disk.  Of course 
this would not work for encrypted I/O, so a signature for 
encrypted I/O could capture the ways in which the PE file 
was being manipulated.  For instance, one questionable PE 
file modification is overwriting the entry point of execution.  
We must be careful to keep the false positive rate low if we 
use these types of heuristic defenses. 

These designs warrant further study into how to minimize 
I/O delay from regular disk requests and how to set up the 
communication channel between the disk and the OS or AV 
engine.  We cannot overload the disk processor to the point 
where regular I/O suffers, but we will harness the idle 
processing power currently available.  The second problem 
of establishing a secure line of communication is not possible 
with current PC design, but there are some things we can do 
to raise the bar for a successful system compromise discussed 
in the following section. 

3. Dynamic Analysis of I/O Requests 
In this application area, we use the drive in a more active 
capacity to scan the disk traffic for malicious activity in 

conjunction with the host AV engine.  Higher-level detection 
code may not easily detect the malicious behavior, but the 
disk may see malicious I/O and stop it before anything bad 
happens.   

For example, the W32/Funlove virus infects local and 
networked drives by adding a small amount of data (“Fun 
Loving Criminal”) to the end of each PE file [6].  As the 
virus enumerates the network shares, it writes to remote PE 
files through memory mapped file I/O.  On-access virus 
scanners work by catching certain file events like open, 
close, and create, and they could not detect the virus without 
more information.  Funlove used memory-mapped I/O to 
compromise remote machines, so traditional scanners could 
not recognize the virus until it had already infected the disk 
[19].  Szor goes on to recommend other defense mechanisms 
including behavior blocking and a network IDS, but an active 
disk scanning for anomalous traffic (e.g., malicious traffic 
that installs itself as a Windows service) can prevent 
intrusions like Funlove with much less cost than an IDS. 

One consequence of scanning I/O patterns at the disk-level is 
that we lose semantic information that we would otherwise 
have in a typical AV engine.  The disk will only receive 
requests that read or write blocks at a given location, but the 
disk needs to know what these blocks map to in order to do 
something useful.  One way in which we could bootstrap the 
disk is by providing a mapping of disk blocks to applications 
at OS installation.  Without talking to the OS, we will need to 
provide all necessary semantic information about the file 
system at the OS installation.  This comes at a cost – not 
being able to securely update the disk software after 
installation.  If we need a more extensible design, then we 
can allow interaction between the AV and disk drive, but we 
run the risk of having these interfaces compromised.  

Some current, and most future PCs, are likely to support a 
Trusted Platform Module (TPM) that enables a secure 
bootstrapping process.  This has benefits in preventing virus 
propagation, but as long as users are able to install additional 
software, TPMs will not stop all viruses.  However, we can 
use a TPM like Intel’s LaGrande for secure communication 
between the AV and the disk [10].  If the AV engine has a 
trusted part of code protected by hardware, then the AV 
engine can attest the calls the disk makes and notify the user 
to take additional actions if necessary. 

4. Detecting Rootkits 
Rootkits are a form of malware that are installed by an 
attacker to keep stealth or secretive access to a machine.  
This is often accomplished by altering some part of the OS 
[9].  Rootkit detection tools like Strider Ghostbuster [22], 
RootkitRevealer [3], and Blacklight [5] perform a high-level 
scan and a low-level scan of a machine looking for a 
discrepancy between the scan reports.  The high-level scan 
will use the Windows API or a command like “dir /s /b”, and 
the low-level scan will read the Master File Table (MFT), 
raw hive files (Windows registry), and the kernel process list.  

The security of these mechanisms relies on the difficulty of 
implementing code that could intercept these low-level reads 
and construct false MFT, hive, or process data.  While this 



may give detection tools the ability to detect most current 
rootkits, it is only a matter of time until rootkits are 
developed that can fool the low-level scans.  The rootkit 
detector will call some API to read the low-level data, and 
this can always be hooked.  The detector could implement 
the functionality of a disk device driver itself to communicate 
directly to the hardware, but some rootkits are now unhiding 
files when they detect a rootkit detector performing a file 
system scan, so the rootkits remain undectected while the 
unhidden files do not get reported as a difference between the 
two scans [15].  This battle between rootkits and detection 
tools will inevitably continue. 

To setup the disk to perform a low-level scan, the disk must 
have more information about the disk blocks.  We bootstrap 
this information at the OS installation, and the disk then has 
the associations for registry data and the MFT.  The kernel 
process information is kept in memory at run-time, so this 
information is not accessible from the disk.  Since the disk 
will be performing the file system scan, the scan has the 
advantage of remaining undetected from any rootkit. 

To recover from a low-level malware infection, we can set up 
the disk to protect certain disk blocks associated with core 
OS files again specified at OS installation time.  Although 
the OS may have system restore data (e.g., MS Windows), 
these blocks would not be writable to any code outside of the 
disk drive.  The main problem is performing an update to a 
protected OS file.  Assuming no rootkit has compromised the 
machine, the user could download an update and override the 
protection mechanism to apply the update.  Of course, this 
does force the user to trust the OS to not have been 
compromised.  Any time one of the protected blocks is 
overwritten, the disk can make a backup to some portion of 
the disk that is not accessible to the OS, in case restoration is 
needed later.  If the disk does indeed find a discrepancy 
between the high and low level scans, then the latest known 
clean block can be restored, and we can perform another 
system scan to make sure all traces of the malware are 
removed.   

The advantages of this approach far outweigh the overhead 
of storing a few KB/MB on the disk.  Capacity is not at a 
premium, since we currently have consumer disks reaching 
as high as one-half TB now [8].  The main weaknesses in this 
approach are updates of registry data and communication 
between the AV engine and the disk.  When the user installs 
an application it can potentially destroy the integrity of the 
registry, but the disk may be able to detect a malicious update 
to the registry in some cases.  For the updates that are not 
deemed malicious, we must either depend on the recovery 
mechanism in case it is later identified as malicious or allow 
the disk to receive updates about the protected disk blocks 
from the OS. 

To compare the high-level and low-level scan, the OS will 
need the low-level scan information, or the disk will need 
high-level scan information.  Because the design requires 
comparing the results from the OS and disk, the 
communication link is again a vulnerable target.  As 
suggested in the previous section, we can make use of a 
TPM.  If a TPM is not available, then we have at least raised  

the bar of system compromise. 

Another example of low-level AV software being 
circumvented by rootkits is within a filesystem filter driver 
[9].  To process an I/O request packet (IRP) in Windows, the 
IRP is passed through a chain of filter drivers before reaching 
the lowest-level device driver [11].  Many AV engines install 
their own filter driver in this chain to process incoming IRPs, 
but even these filters could be circumvented.  Using the disk 
for scanning ensures that malicious traffic can be scanned 
while the scan itself cannot be circumvented. 

5. DADDIO 
We are building a new tool to Dynamically Analyze Disk 
Drive I/O (DADDIO) while offloading the CPU workload 
and aiding in low-level malware detection.  DADDIO can 
provide interfaces to the AV engine to perform string 
matching and for viewing the low-level filesystem details, 
and it will analyze disk I/O for malicious activity.  If the AV 
uses software interfaces to DADDIO, then we must use a 
TPM to use DADDIO securely.   

We may be able to leverage DADDIO without a TPM, but 
we will lose the capability to communicate securely with the 
host OS.  To perform services on behalf of the host AV 
engine, DADDIO will throttle its own execution workload if 
the I/O performance suffers.  DADDIO’s other main action 
of scanning for malicious disk I/O will be performed during 
each write to the disk.  Reads do not matter if we assume no 
malicious blocks exist on the disk before DADDIO is 
activated and DADDIO can prevent malicious writes to the 
disk. 

Recovery from detected malicious I/O traffic can be done 
without interaction from the AV engine.  Without communi-
cation with the host OS, we do not risk compromise of the 
communication channel, but DADDIO has no way of 
indicating a problem to the user.  At the worst, DADDIO can 
simply suspend all disk I/O.  Once users observe the system 
has frozen from the suspended disk, they will most likely 
perform a reboot, erasing the malware from the system.  Note 
that this eradicates the malware, since DADDIO prevented it 
from ever writing to the disk.  If the virus activity can be 
isolated, DADDIO can continue to service regular disk I/O 
while denying disk access to the malicious process 
performing I/O.  One possibility is to adopt the failure-
oblivious computing approach introduced by Rinard et al. 
[14], and simply write different data on the drive than the 
malicious code.   This approach has proven effective in 
masking memory errors to keep a faulty server running [14].  
Our aim is to allow the OS to safely continue execution 
without malicious corruption. 

6. Related Work 
Others have also studied the idea of providing AV services 
outside of the host machine AV engine.  Work by Pennington 
et al. studied an AV implementation on an NFS server [13].  
In hardware, Silberstein [17], Tarari [20], Symantec [7] have 
proposed ideas to offload AV computation from the main 
host. 



Silberstein observes the signature matching overhead for the 
open-source AV tool, ClamAV [2], can be as high as 40%.  
He suggests using a hardware coprocessor to assist in string 
matching. 

Pennington's implementation of an IDS uses an NFS server 
to support a rule-based IDS system [13].  For their IDS, they 
require a filesystem separate from the host, so they can 
guarantee protection for the IDS administration system even 
if the host has been compromised.  However, this protection 
does not extend to the client, so a compromised client (e.g., 
trojan) could allow unauthorized access to data on the NFS 
server [Gobioff99].  Our design protects the local machine by 
placing an AV engine directly on the disk drive that can 
partition the workload between the main AV engine and the 
disk drive AV engine. 

The Tarari [20] and Symantec [7] implementations describe 
designs that can also be used as a hardware or networked 
offloading engine, respectively.  Both designs are for 
offloading the workload of AV engines, but neither one 
provides for offloading on the local machine. 

One critical difference is that our design can capitalize on the 
disk already being on the critical path of the data, so we are 
now analyzing the data rather than just performing data 
transfers.  We avoid the potential bottlenecks of having to 
pass data through dedicated (and more expensive) hardware 
solutions. 

7. Conclusion 
Active and application-aware disks can be useful in malware 
detection by offloading part of the AV’s offload, providing a 
closer view of the low-level filesystem, and scanning for 
malicious disk access patterns using low-level disk I/O.  We 
advocate using the disk drive processor for malware 
detection, and we have presented three motivating examples 
showing the advantages of using the disk processor for 
detecting viruses and rootkits.  Current virus scanning can be 
expensive (e.g., emulation and string scanning), and the virus 
scanner must minimize its own overhead.  Lowering the host 
AV scan-time frees up more processing time for more 
analysis or for performing other application tasks.  If we can 
capitalize on detailed dynamic analysis of disk I/O, we may 
be able to avoid more viruses like W32/Funlove.  We are 
currently investigating ways to partition the load between the 
host CPU and the disk drive CPU and are identifying the best 
techniques that can benefit from low-level disk block 
information. 
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