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Abstract – After the voting debacle in the Florida Presidential 
election of 2000 with its now-fabled hanging chads and 
pregnant chads, many voting jurisdictions turned to electronic 
voting machines. This transition has had at least as many 
problems as punch-card systems and added the additional one 
of making recounts impossible. As a result, many 
jurisdictions have gone back to paper ballots in despair. We 
believe that electronic voting can have many benefits 
including accessibility and usability but requires regarding 
voting as a system of which the voting machine is only a 
(small) part. In this paper we describe all the components of 
an electronic voting system that is practical and difficult to 
tamper with. We emphasize the importance of systems 
aspects, defense in depth, and being paranoiac. 
 
1. Introduction 
     Seven years ago, the Help America Vote Act (HAVA) 
was passed to prevent a repetition of the 2000 Florida Presi-
dential election. With HAVA’s funding, states replaced their 
punch card voting systems and lever voting machines with 
new electronic voting machines. These new machines were 
adopted to enhance election integrity by producing an 
accurate tally while supposedly protecting the votes from 
being maliciously changed, but the machines are unfortun-
ately still plagued with a multitude of problems [12]. In many 
cases voting machine errors are not auditable, especially 
when there is no voter-verifiable paper audit trail (VVPAT). 
In addition to the typical irregularities and unexplainable 
errors [11, 43], many of these machines have been shown to 
be rife with security problems [2, 5, 13, 16, 24, 25, 36]. This 
stream of problems is eroding voters’ faith in voting systems, 
and election integrity is in jeopardy. 
     In the past, voting systems were used for a single purpose: 
determining who got the most votes. As new voting systems 
have been introduced, designers have added new and pre-
viously nonexistent features such as allowing voters to verify 
their own votes and also the final tally. However, straightfor-
ward ways that allow a voter to verify how he voted also al-
lows him to sell his vote and prove it to a buyer, so recent 
electronic voting research allows verification but prevents 
vote selling (and its cousin, voter coercion, which is the same 
thing except the voter is an unwilling participant and does not 
get paid) [3, 6]. While verification and resistance to vote sell-
ing are desirable, their inclusion in proposals has led to com-
plex designs that few legislators or voters can understand. 
While many of the solutions implementing these features are 
elegant, the features themselves have little to do with election 
integrity (e.g., a recently deceased registered voter’s vote can 

still be cast). In our view, maintaining the integrity of the 
election is paramount and features achieving other properties 
are secondary. 
     Our goal is to design an electronic voting system that re-
stores voter confidence through its simplicity and security. 
The overall design is different than most voting systems as 
we focus on designing an entire electronic voting system 
from beginning to end. Although other paper-based systems 
have recently been introduced [7, 8, 14, 35], these schemes 
are outside the scope of this paper because of their paper-
based design. Our motivation is that a well-designed elec-
tronic voting system has several benefits including improved 
accessibility such as audio for the blind, cheaper and faster 
reporting of the tentative vote tally, and more flexibility in 
displaying custom ballots (e.g., ballots in multiple languages, 
a larger font for the elderly, prevention of overvotes, and 
feedback on undervotes). 
     In addition to these benefits, complexity remains as a 
challenge to a voting system’s acceptance. Voters and legis-
lators who do not understand a complex voting system will 
not accept it. Not only is a simpler system more likely to be 
understood and accepted, but it should be more robust. Un-
like the people running other complex systems (like air-
planes), the people running a voting system may want it to 
fail (i.e., be able to secretly modify the results) for partisan 
reasons. Because of the challenge of building a dependable 
electronic voting machine that is resistant to failure (from 
attack or error), the voting machines must not be able to un-
detectably alter election integrity. This can be achieved by 
having the machines print voter-verifiable paper ballots and 
paper receipts to ensure election integrity is independent of 
the voting machine’s operation [37]. 
Contributions. We present a transparent voting system from 
the very beginning of an election to the final tally, specifying 
exactly how a Trusted Platform Module (TPM) is used, 
presenting a scheme that enhances registration integrity, and 
introducing a design that prioritizes election integrity (An earlier 
introductory version of this work is also available [32]). We 
have developed a nine-step voting system that takes place from 
an election’s inception to its final conclusion (Section 3). Where 
possible, we have used standard cryptographic primitives and a 
TPM throughout the design. While others mention using trusted 
hardware [10, 21, 39], we specify the TPM’s use in detail and 
take advantage of its existing PKI infrastructure (Section 3). 
Because of new concern over registration integrity [31, 33, 42], 
we have also added a new component that better ties registration 
into the act of voting (Section 3, Step 2). Our verification 
process is different from most current voting systems as a voter 
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can easily check if, and how, his or her own vote was counted 
(See Section 3, Step 9). 
 
2. Assumptions 
     We make four assumptions: (1) each voting machine has a 
TPM and a mechanism to perform run-time attestation 
(current voting machines do not support this); (2) advance 
voter registration is required (making it unsuitable for some 
states); (3) voters can use and write down a password 
established at registration time to be used on election day; 
and (4) human-readable receipts that plainly show the voters’ 
choices can be printed by the voting machines. 
     TPMs are attractive for use in voting machines mainly for 
their hardware protection of cryptographic keys. This work is 
among the first to explicitly detail how a TPM should be used 
in an election – specifically in how to handle keys and for 
software attestation. We do not solve the key management 
problem, but we offer an approach to manage voting system 
keys using the TPM’s established PKI. In addition to key 
management, we use the TPM to attest different software 
used throughout our voting system. By using open source 
software, and allowing voters to verify that the published 
open source software is running at the time they vote, people 
will have more faith that the election is being run honestly 
[17]. People are more likely to trust a voting system that is 
more transparent and allows source code inspection. 
     If a voter, poll worker, or other third party chooses to 
attest the voting machine software, successful attestation tells 
him that it is likely that the machine is running that software 
and the machine is not recording private information (We 
assume that compromising the machine’s hardware on which 
attestation depends is a nontrivial problem). Due to the 
possibility of hardware compromise, we use paper ballots 
with paper receipts, and this prevents a machine from 
undetectably altering a vote as long as the voter checks the 
receipt. If there is a discrepancy between the electronic and 
paper record, the paper is the final and trusted result. 
     We additionally assume that voter registration is required. 
This rules out using this type of design in a state where ad-
vance registration is not required, but states can change legis-
lation to use this system. Recently, the media have given 
much attention to registration integrity, and many states have 
had problems in maintaining their registration databases [42]. 
In 1997, Florida uncovered a corrupt Miami Mayoral elec-
tion, and they experienced registration problems when they 
purged their voter database to stop double voting or voting by 
the dead [29]. Recent problems with the voter database in 
New Mexico has also cast light on this problem [9]. Our sys-
tem uses an append-only voter registration database that pro-
vides a clear record of all database changes. While using an 
append-only database is not novel, this is one of the first vot-
ing systems to integrate a registration integrity solution into 
its design. 

     To enforce registration integrity, part of the registration 
process requires the voter to create (and optionally write 
down) a password. Requiring a password is similar to other 
voting systems that require passcodes for the voters [18]. In 
our system, a password is required in order to vote (a fail-safe 
is provided), but this is the only additional burden that most 
voters will experience. The voter can ignore other slightly 
more complicated parts of our voting system (e.g., interaction 
with a TPM via attestation), and this simple password 
protects votes from being stolen at the precinct. 
     Recent cryptographic voting research has attempted to 
solve the problem of vote selling while also providing 
auditability through receipt verification. Many of the current 
electronic voting systems do not allow verification (e.g., 
currently deployed ES&S, Diebold, etc.), and using these 
systems for an election has proven disastrous [12, 26, 40]. 
Without the ability of producing a reliable audit, many 
question the election outcome. Due to these problems in 
auditability, our system does not equally value vote selling 
resistance and auditability. The main priorities are election 
integrity and having voters understand the system. 
     The lack of auditability has decreased voter confidence in 
current election systems [4], and many voters are turning to 
absentee ballots. In just four years, early voting has increased 
to approximately 30% of all votes, an increase of 10% over 
the 2004 presidential election [28]. Of these early votes, the 
available 2008 election data clearly shows that mail-in votes 
are a significant percentage of all votes cast. With few 
reported problems of vote selling and so many problems of 
auditability, we emphasize auditability over vote selling by 
using human-readable ballots and receipts. 
     In addition to auditability, human-readable ballots and 
receipts are essential for building voter trust. If voters and 
politicians do not understand the system, then they will not 
have confidence in the system, and recounts will become less 
meaningful. Our idea of using human-readable receipts is not 
new [34]. In fact, most believe that introducing the possibility 
of vote selling makes the voting problem trivial, but it is not. 
Making a trustworthy electronic voting system (trusted by 
both politicians and voters) that is both reliable and auditable 
is challenging. This paper is about the design of such a 
system. 
 
3. Outline of the Proposed Voting System 
    Our voting system consists of nine steps, listed below, 
which take place in sequence during a period that may take 
up to a year after the election is called or the process started. 
In this paper, we will use the U.S. names for the officials 
involved, but analogous ones exist in other democracies.  
 
1. Precinct master key generation and distribution. 
2. Voter registration. 
3. Proof of registration mailed to the voters. 
4. Voting machines are prepared. 
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5. Key assembly at each precinct. 
6. Voters show up and check in. 
7. Voters cast their votes. 
8. Tabulating the votes. 
9. Publishing the result. 
 
Each of these steps has some subtle points and potential for 
malfeasance or fraud. Some of these steps rely on a Trusted 
Platform Module (TPM), and we now outline the TPM 
functionality needed. 
 
Using Trusted Platform Modules for Attestation and Key 
Management. Our goal is to use an open design in our system 
to engender trust. We use open-source voting software (currently 
under implementation), publish it on a website and allow 
verification of that software. Getting states to use open-source 
software is a political and legal issue. The technical challenge is 
to allow voters and others to verify key properties about a 
machine’s configuration immediately prior to using it for voting, 
a process called attestation. 
     Our attestation assumptions are: 
 
     1. The voting machine hardware operates correctly 

and has not been compromised. 
     2. The private key of the TPM has not been leaked. 
     3. All of the software that can potentially execute during 

the voting process is included in the TPM 
measurement (described below). 

 
     If the assumptions hold true, then attestation shows the 
machine is running the published open-source software and a 
successful machine or key compromise is made more dif-
ficult (assuming that compromising the TPM is a nontrivial 
problem). The possibility of successful verification under 
violated assumptions still exists, and we must also ensure that 
the machine cannot undetectably affect the election outcome 
(although violations will hurt other voting system properties 
including privacy and robustness). To ensure this property, 
our voting system uses human-verifiable paper ballots and 

human-verifiable paper receipts that can easily be checked 
after casting a vote. 
     In our scheme, software on the voting machine is verified 
by computing its hash and then comparing it to the published 
hash of the open-source code. To perform attestation, we use 
a new instruction in x86 chips and a hardware device called a 
Trusted Platform Module (TPM) that is already part of many 
modern PCs. Although our design uses x86 chips, 
specifically AMD x86 chips, Intel has similar functionality in 
newer chips that could be used [19]. 
     In AMD processors that support TPM version 1.2 chips, 
there is an x86 instruction called skinit that cryptographically 
hashes the contents of 64-KB of memory [1]. This instruction 
disables paging and interrupts, disables DMA to the 64-KB 
memory region, verifies that all cores are disabled but the one 
running skinit, runs a hash on the 64-KB of memory, stores 
the hash in a specific TPM register, and then executes the 
code stored in the 64-KB of memory. Later, a challenger can 
ask the operating system for a cryptographically signed copy 
of the TPM register containing the hash of the 64-KB code. A 
certificate for the corresponding public key can be provided 
so anyone can verify the hash of the code. Since only the 
TPM has the private key, if the signed hash of the 64-KB 
memory is correct, the 64-KB program, which we will call 
the checker, must have been correct. 
     We use the checker to verify the entire voting machine 
software. The checker hashes all of memory (including the 
operating system), any data that could affect the machine's 
operation (e.g., ACPI tables and the BIOS system manage-
ment code [22]), plus the main BIOS, CD-ROM BIOS, and 
any other BIOSes present. It also keeps interrupts and DMA 
disabled, so that the attested code never loses control. Once 
the code is verified, it always remains valid and in control 
(the machine is not on any network). Once you can be sure 
that the running software is identical to the published 
software, the rest is manageable. 
     In four different parts of our voting system design, we use 
the TPM to attest that the checker is correct. If the checker is 
correct and it produces a valid measurement of the rest of the 
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Fig. 1. Code verification using skinit. Steps 2b and 2c are executed atomically by the skinit instruction. 



 
4 

voting machine software, then we can conclude that the 
machine is running the published software under our previous 
assumptions. If attestation fails, then a different device 
should be used to make sure that the failure is not with the 
device issuing the attestation challenge. 
     To begin attestation, the algorithm accepts a random value 
(a nonce) as input as shown in Fig. 1 (Step 1). It then disables 
interrupts and DMA to the memory containing the checker 
just before it executes skinit (Step 2a), computes and stores 
a hash of the checker program in TPM Platform Configu-
ration Register (PCR) 17 (Step 2b), and then executes the 
checker. Before the checker exits, it writes its result (the hash 
of all of memory, code, and relevant data) into a different 
PCR register, r (Step 2c). After skinit has finished, the 
machine returns the TPM signature of {PCR r, PCR 17, 
nonce} (Step 3). 
     From using the TPM to store keys and to help with attes-
tation, the TPM is now a primary target for attack. While the 
keys reside in a TPM, the manufacturer of the hardware 
could act maliciously. Even without malicious intent, buggy 
hardware may yield to compromise. Although we can have 
independent authorities check the hardware for specification 
conformance, an examiner may miss a bug or vulnerability. 
Due to the possibility of bugs, no solution should place all of 
its trust in the hardware. We provide voter-verifiable receipts 
and voter-verifiable ballots to protect against both malicious 
and non-malicious hardware issues and use the electronic 
count for quick results. Any discrepancies of count are re-
solved in favor of the paper ballots. 

 
Step 1: Precinct Master Key Generation and Distribution. 
Like other voting schemes, multiple keys are needed in the 
election. Computational load is not an issue (a voting 
machine can easily handle 600 voters in 15 hours), so public-
key cryptography (e.g., RSA) will be used due to its simpler 
key management. 
     We use three keys to encrypt and sign voting data. 
 
Keypair 1. Encrypts/Decrypts files on voting and poll worker 
  machines (per precinct) 
Keypair 2. Ballot-signing keypair (per voter) 
Keypair 3. Software attestation signing keypair (per 
  attestation) 
 
A single key pair (keypair 1) is needed per precinct (typically 
a school or firehouse with perhaps a dozen identical voting 
machines) to lock/unlock files on the voting machines and 
also on the poll workers' machines. The encryption of the 
relevant election files on all the precinct machines ensures 
their data confidentiality up to the start of the election. If this 
private key is compromised, the voter authentication tokens 
are in jeopardy (the password hash, see below). 
     For the other two keys, we can use each machine's TPM to 
generate new keys for each voter. Each ballot is signed by a 

unique. freshly TPM-generated key (keypair 2). Another 
TPM-generated signing key is generated for each voter-
initiated request to attest the software (keypair 3). Both 
signing keys are signed with a freshly generated TPM key, 
called a TPM attestation identity key (AIK), that shows that 
the TPM is managing the private keys in keypair 2 and 
keypair 3; we use the machine's single endorsement key (the 
most trusted key in the TPM) to sign each TPM attestation 
identity key to show that it is a valid AIK. Each AIK and 
single endorsement key (EK) never leave the TPM and are 
not part of the three listed keypairs. 
     The EK is the foundation of trust in a TPM. For each 
machine’s EK, a certificate is provided to show its authen-
ticity. In addition to the EK certificate, a platform certificate 
(signed by an independent third party) can be used to show 
the machine and TPM’s conformance to specifications. Using 
the EK and AIK, the group can then verify the software of 
the machine before using it to generate keys. 
     Individuals can inspect a machine’s endorsement key 
(EK) certificate (from the TPM manufacturer, or alterna-
tively, regenerated at this event) to verify a machine has a 
legitimate TPM. An EK can be issued to the TPM in one of 
two ways: by generating the EK inside the TPM or injecting 
the key from outside of the TPM. We advocate the creation 
on the inside to take away the possibility that someone could 
get the key before it is injected. Thus, in order to compromise 
the EK, collusion with the vendor or a compromise of the 
trusted hardware is needed. This assumes that people trust the 
certificate authorities and certification processes, and reliable 
certification processes are in place. 
     The TPM-created keys do not need distribution (keypair 2 
and keypair 3), but the keys that are used to decrypt the data 
on the voting and poll worker machines (keypair 1) do need 
distribution, because the decryption key will be distributed 
later. For California’s approximately 25,000 precincts, 
25,000 key pairs must be pregenerated, stored, and distrib-
uted. We are distributing a keypair per precinct (not per 
machine) and taking advantage of the TPM’s already 
established PKI for signing. Other alternatives include having 
one key per county or perhaps one key per state. We felt that 
having one key per precinct presented the best balance 
between key management and the impact of a key comprom-
ise. At worst, a precinct key’s compromise will only affect 
the voters for that specific precinct. 
     These 25,000 precinct keys are generated as follows. The 
Secretary of State chooses a particular brand and model of 
computer to use (e.g., by competitive bidding) that supports a 
TPM chip. On a designated day months before the election, 
he or she invites all the political parties and the media to a 
public key generation event. Each party may send one party 
officer and one technical expert chosen by the party. 
     After attestation by all the technical experts present, the 
precinct keys (one pair per precinct) can be generated outside 
of the TPM by the now-verified trusted software. The new 
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public keys are signed and stored on a notebook computer. 
Because the machine’s integrity has just been checked, the 
keys are trusted. The private keys are split using any well-
vetted secret-sharing scheme. A fault tolerant scheme will 
likely be needed in the case of someone losing her or her key 
part, but such schemes are well known. 
     Each part of each key’s secret is written onto some tangi-
ble medium such as a contactful smart card (so there are no 
radio signals to intercept). Smart card reader/writers are 
available with RS-232C serial line interfaces, which have ex-
tremely simple device drivers (unlike USB drivers, which are 
much more complex) enabling easier code verification. The 
PC can have a PCI board with a dozen serial lines so many 
smart cards can be written in parallel. If need be, multiple 
PCs can be used in a similar way so all the smart cards can be 
produced in one day, while the political parties’ technical ex-
perts watch the PCs and each other like hawks. 
     For the moment, assume each private key is divided into 
just two parts, A and B. When all the smart cards for a 
particular county have been finished, the A parts are put into 
a briefcase and locked and handed to the county’s registrar of 
voters and taken back to his county. The B parts are put in 
another locked briefcase and given to the county sheriff and 
taken back to the county separately. They are locked in sepa-
rate safes in different buildings until the election. For extreme 
paranoia, the keys could be split into, say, four parts each, 
with the two leading political parties in each county each 
getting pieces. The key cannot be assembled before election 
day since the various parts are being held by independent 
(and potentially hostile) parties. This scheme tacitly assumes 
that no part of any key is lost during this process, and at least 
one private key holder does not collude. However, other 
types of (fault-tolerant) threshold schemes could be used in 
practice. 
 
Step 2: Voter Registration. Once all the keys have been 
distributed, voter registration can begin (Fig. 2 shows a voter 
registration record). If the keys are reused, then the voter does 
not have to re-register. To register, a voter goes to the county 
office with the necessary identification as required by state law 
(e.g., proof of residence). As each voter registers, a record is 
created for that voter in an append-only file. 

    To protect against attacks by dishonest poll workers, we add a 
voter-generated password needed to vote. Since the voter may 
not trust the county officials with the password, he may bring a 
device (e.g., a PDA, laptop, or cell phone) with the password 
preloaded on it. Voters lacking their own device can use the 
county’s computer to enter their password, but then they have to 
trust the county not to steal it. The voter will use this device to 
send his hashed password (not the plaintext password) to the 
registrar’s computer. 
     Some voters will pick weak passwords leading to easy 
offline brute-force attacks. If we use salt values as tra-

ditionally done to defend against password guessing, then 
this does not help with someone that has access to the 
password database and all the salt values. Instead, we can use 
the precinct public key to encrypt the password hash with a 
random value rather than just storing the hash as is normally 
done. The password hash will not be needed until election 
day, and the precinct private key will not be ready  
for decryption until then. Fortunately, this extra security does 
not add any complexity for the voter. He or she will continue 
to use his device to enter his password. The difference is that 
the device then sends Ek (hash(password) || confounder), 
where k is the precinct public key,  || is concatenation, and the 
confounder is a random value that is solely to prevent 
guessing [15]. The encrypted password remains noninvertible 
until the secret-shared private precinct key is reassembled on 
election day. 
     In addition to these steps, and for defense in depth, the 
registrar’s computer generates a secret for voter i, Si and 
breaks it into two parts, Si1 and Si2 where Si = Si1 || Si2 (where 
|| means concatenation or XOR). It encrypts Si1 and Si2 with a 
county-generated public key and stores hash(Si1||Si2). Each 
of these values are added to the voter’s record and will be 
later used on election day. 
     Once the new record is ready for insertion, it is immedi-
ately cryptographically hashed (with the rest of the entire 
voter database), the hash is encrypted, and then the hash and 
the record are inserted into the database. To complete the 
record’s creation, a signed, time-stamped printout of the rele-
vant information is made to record the voter’s registration, 
and the record is transmitted to a centralized state-wide 
location (complies with HAVA’s requirement for a central-
ized database of all registered voters). Immediately after 
registering, the voter is encouraged to write down his chosen 
password for future reference. Later, any voter can check his 
status by going to a state website as can be commonly done 
today. This procedure detects dishonest county registrars who 
discard the registrations of selected voters. 
     Because a voter’s registration information may change 
(e.g., people may move or die), database modifications will 
be necessary. To keep the integrity of the already computed 
hashes, the database records are never modified in place. 
Instead, when a voter record is modified or deleted, a signed 
record describing the change is appended. In this way, we 

Voter ID: 31415926
Precinct: 4072
Name: Mary Hatch
Address: 323 Sycamore, NY, NY
Party: Independent

Encrypted with precinct key 4072 (       )

Encrypted with county public key (   )

hash (passwd) || confounder

Si2Si1

hash (record || database)

hash (Si1||Si2)

 
Fig. 2. A voter registration record 
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can have an audit log of all modifications to the database. 
Using this registration design, we have distributed the trust 
among local and state participants, and we have created an 
audit trail of the registration process. To check added and 
deleted voters, we suggest using random audits of database 
records to catch attacks that would register nonexistent or 
ineligible voters. 
     This design is open to new attacks. A dishonest registrar 
could compromise the machine, and record secret informa-
tion (the secret values, Si1 and Si2). To protect against the 
revealing of Si1 and Si2, we could use the voter-supplied 
device (or the county-supplied device) to contribute to Si1 and 
Si2, but the voter would then have to be able to check if his 
contributions were used in Si’s generation. For simplicity, we 
use the design described, and note that an adversary has little 
power without the voter password, which even the registrar 
does not have. 
 
Step 3: Proof of Registration Mailed to the Voters. A few 
weeks before election day, the county sends to each voter by 
snail mail a sample ballot and booklet with the candidates’ 
statements, information about ballot initiatives, etc. Many 
states already do this. However, now, included in the packet 
is a single-use difficult-to-forge card (e.g., printed on security 
paper, containing a chip, etc.) that serves as proof of citi-
zenship, residence, and registration, so that those issues need 
not come up at voting time (because you cannot register 
without meeting the legal requirements). The card is free, just 
like the sample ballot, so as not to put a burden on poorer 
voters. The card will cost the states money, but revenue not 
spent on registration difficulties can help cover the card 
expense. 
     In addition, and most important, the card also contains the 
Si1 generated and recorded at registration time It could be 
printed on the card as characters, printed on the card as a bar 
code, put on a chip etc. (Si2 is encrypted and electronically 
recorded in the database but is not on the card). The card also 
contains the address of the polling place, the hours it is open, 
and a reminder to bring your password. The voter will use 
this card for authentication to a poll worker on election day 
(Step 6). 
     The registration mailing has some different attack vectors. 
Someone could intercept Si1, but this should not be a problem 
(the voter password that will be required later in the voting 
process is still unknown). Denial-of-service attacks are still a 
problem. For example, someone could purposefully (or 
accidentally) fail to mail out some of the cards, or they could 
mail out the incorrect Si1. These attacks would be more diffi-
cult if it were possible to require multiple people to mail reg-
istration cards together (forcing collusion for a successful 
attack), but having multiple mailing participants may not al-
ways be practical. Like current systems, we do not anticipate 
large-scale problems with the delivery via mail. 
 

Step 4: Voting Machines are Prepared. For each voting 
machine in precinct i, a file is prepared containing the list of 
all voters in that precinct (This is why a short plaintext 
header is needed before each encrypted record). Each ma-
chine in the precinct gets the same list so a voter can pick any 
voting machine and it will have the necessary information. If 
a voter goes to the wrong precinct, he will have to cast a 
provisional (paper) ballot since the voting machines there 
will not have the required record. 
     Election officials will use the state-wide list of registered 
voters to build new lists of registered voters for each precinct. 
This list contains the set of all (encrypted) voter records for 
that precinct, but a different integrity field will be used in 
each record for the shorter list (each record’s integrity value 
in the state-wide list is calculated using all the records before 
it). Because the precinct list is a subset of the entire statewide 
list, its creation should be done by a group of trustees to 
protect against precinct list attacks. 
     After voter registration has ended, the entire precinct list 
is stored on a read-only medium (e.g., a CD-ROM) that will 
be used to boot the voting machines in the precinct. The point 
of encrypting the entire voter file is to prevent anyone from 
tampering with it while it is in storage prior to the election or 
in transit to its precinct. A second CD-ROM is also prepared 
for the poll workers’ machines at each precinct. This CD-
ROM contains the file containing each voter’s ID, name, 
address, and Si2 value (verified by the voting machine to 
make sure a voter has been properly authenticated). This file, 
prepared by the registrar, is also encrypted using the 
precinct’s public key to prevent tampering in storage or 
transit. 
 
Step 5: Key Assembly at Each Precinct. Well ahead of the 
election, the EK and platform certificate for each voting 
machine and the public key of the precinct are posted on the 
county’s website. Just before each precinct opens on election 
day, say at 5:30 A.M. for a 6 A.M. opening, the head poll 
worker shows up with the county’s half of the precinct’s 
private key. He gets it (on a smart card) from the county reg-
istrar, who unlocks the safe the day before the election. 
Similarly, a sheriff’s deputy brings the other half at 5:30 
A.M. as well. If political parties have fractions of the private 
key, they also come at this time. Legal sanctions should be in 
place to encourage showing up on time (to prevent denial of 
service attacks by shutting down the polling place). This 
practice is similar to current distribution methods where 
officials hand-deliver and load ballot information onto the 
voting machines just before voting begins [20]. 
     Before being booted, the electronic voting machines are 
inspected for signs of tampering. Alternatively, the machines 
could be vetted back at headquarters the day before and 
hermetically sealed in a tamper-evident way. The machines 
(which have no hard disks) are now booted from the 
precinct’s CD-ROM. 
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     Once the voting software has been loaded, the poll worker 
uses a PDA to perform attestation, as described above (For 
additional security we could verify the machine with multiple 
devices). As usual, the verified software disables interrupts 
and DMA so unverified software never gains control. 
Without a network, the attested code will continue execution 
without interference. 
     After the poll worker verifies the machine’s integrity, the 
smart cards with the precinct’s private key parts are succes-
sively inserted to assemble the final precinct key to decrypt 
the passwords and Si2 on the CD-ROM. The precinct key 
assembly can take place outside of the TPM, because all code 
on the machine has now been verified. Since the full precinct 
key was not available in one place until this moment, no one 
could have meaningfully changed the encrypted values in the 
voter files during their transport or storage. The last step in 
getting the precinct ready is verification of the poll workers’ 
machines (done in the same manner as the voting machines). 
After this step, the precinct is ready to accept voters. 
 
Step 6: Voters Show up and Check in. When the doors 
open, the first voter approaches a poll worker and hands over 
the card he was mailed. (In the absence of the card, a paper 
provisional ballot has to be used.) The poll worker enters the 
voter’s ID in a computer, thus bringing up the voter’s (now 
decrypted) record. The poll worker checks if the name and 
address on the screen match the card. For additional security, 
a digital photo of the voter taken at registration time could be 
included in the computer record and/or printed on the card. 
(A stolen card is worthless without the password.). The poll 
worker then asks the voter if he remembers the password 
entered at registration time. If not, the voter is given a paper 
provisional ballot. Once such a system is introduced, people 
will be constantly reminded to choose passwords easy 
enough for them to remember, like the full name of their 
favorite cousin. 
     Then the poll worker uses a bar code reader to enter Si1 
from the card. The computer then concatenates the Si1 value 
with its stored Si2 value to get Si = Si1 || Si2. It then creates a 
voting token (a contactful smart card) containing the voter’s 
ID number, VIDi, and Si. After the token’s generation, the 
computer re-encrypts the voter’s record. The voter is handed 
the voting token, as shown in Fig, 3, and told to go to any 
voting machine and follow the on-screen directions. 
 
Step 7: Voters Cast Their Votes. Before starting to vote, the 
voter may want to verify that the voting machine is indeed 
running the open source software published on the county 

registrar’s website. Anyone can do precisely the same thing 
the poll worker did first thing in the morning: use a portable 
electronic device to send a challenge to the voting machine 
over the serial cable and check the response to see if the 
signed checksum of the software is correct and has a valid 
signature (A technically challenged voter could bring a tech-
savvy friend to verify the machine for him or her). Since 
some voters will not wish to take part in machine 
verification, the user interface should make it easy to bypass 
this step if desired, to allow the voter to immediately begin 
the voting process.  
     Attestation’s benefits are the protection of voter privacy 
(successful attestation under our assumptions can show that 
the voting machine software did not record voter informa-
tion) and making it more difficult to compromise a voting 
machine. Because the source code is public, a voter can now 
have more confidence that the machine is functioning 
correctly. In the past simple software modifications could 
have violated voter privacy or mis-recorded votes. Now, an 
attacker must violate one of our attestation assumptions to 
run malicious code on an attested voting machine. If veri-
fication succeeds while violating our attestation assumptions, 
election integrity is not compromised, because the voting 
machine will issue human-verifiable paper ballots that can be 
easily checked by the voter. 
     The on-screen directions tell the voter to swipe the voting 
token with the reader as shown in Fig. 3. The computer then 
looks up the voter record for VIDi, computes hash (Si1 || Si2) , 
and compares it to the value stored in the record. A match 
means two things. First, the voter got the card at home 
(assuming no one intercepted Si1 from the registrar to the post 
office to the voter), thus at least has access to the mailbox at 
the address given at registration time (to get Si1). Second, that 
the poll worker authenticated the voter and gave Si2 (i.e., 
voter did not just sneak in the back door). 
    Next, the voter is asked to enter his password. The hashed 
password value is compared to the stored hashed value in the 
voter’s record. If they match, the voter is approved and may 
vote. If they do not match, the voter can try again up to k 
times before being locked out. In addition to Si1 and Si2 
(something you have), the password (something you know) is 
the second line of defense. Without all three values (Si1, Si2, 
and the password), no one can vote electronically and must 
use a provisional ballot. This is the only part of the voting 
system that requires a change in the voting process, but a 
password that the voter may write down should not pose a 
large difficulty. 
     Now the voter is presented with the various races 

Name, Address

Voter id, Si1

Voter Registration Card

Voter Poll worker
(checks Si1; gives Si2)

Voting Machine

Voter 
goes to 
precinct

photo

Voter

Voter is 
ready to 
vote

Voting Token

VIDi, Si = Si1 || Si2

Voter
(gives Si1) (swipes token) (checks token and password)

Fig. 3. The voter turns in the card mailed to him for a voting token and then uses the token to vote. 
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(President, Governor, etc.) one at a time and is given the op-
portunity to select a candidate for each one. Here is where the 
multilingual, large font, audio, and other capabilities of the 
machine shine. At the end, the machine displays a screen 
showing all the choices and asks if they are correct. If not, the 
voter can make changes, thus avoiding all the problems seen 
in the 2008 Minnesota Senate election [41]. If the voter 
confirms that the choices are correctly recorded, the vote is 
signed with an auto-generated signing key, encrypted with 
the precinct public key, and recorded on the storage medium 
(e.g., CD-ROM or flash memory), and the smart card is 
overwritten to prevent reuse. There should be a table with 
initially blank vote slots on the recording medium and one 
chosen at random (using random numbers from the TPM) to 
prevent officials from determining after the election how the 
kth voter voted by examining slot k on the output medium. If 
a CD-ROM is used, this might require reprogramming the 
firmware slightly. 
     A subtle attack exists at this point. Unlike most voting 
systems, the poll workers are not fully trusted in this design. 
If a poll worker were to create n identical smart cards (e.g., 
containing his own information), then the poll worker could 
use each card to cast a vote during election day. Our defense 
is simple. The voting machine will also record (to a random 
location) a hash of the voter’s secret, Si. By having each 
voting machine check this hash before casting a vote, this 
limits someone to casting v votes for v different voting 
machines. Operational procedures that prohibit people from 
carrying more than one smartcard around after the polls open 
can also help deter this type of attack. In any case, we view 
this attack to be unlikely. The attacker has several con-
straints: a poll worker must help (or be the attacker), the 
votes can only be cast on election day, and the attack must 
happen while the polling place is open. 
     To finalize the vote, the machine prints a signed human-
verifiable paper ballot for each race. Having a ballot per race 
protects against an attacker asking a voter to fill out an entire 
ballot in a specific manner and later show this ballot to the 
attacker. Most currently deployed voting machines use cheap 
printers that sometimes jam; we assume that better quality 
printers are in use (as on ATMs). The voter is instructed to 
verify the ballot and put it in the ballot box under the watch-
ful gaze of the poll workers. In the event of a disputed elec-
tion, the paper ballots are optically scanned or counted by 
hand. These are the real votes. The machine totals are just 
preliminary tallies to give people a rough score just after the 
polls close. With signed paper ballots, a machine cannot un-
detectably change the election results. 
     In addition, the machine uses a TPM-generated random 
number to print out a separate piece of paper for each race 
with the precinct ID and a random value (unique across all 
the votes in the precinct), the political office, and a URL on 
it. Ideally, a poll worker physically stamps the paper (a valid 
receipt must have a stamp and be signed with a key from a 

machine in the specific precinct) and the voter is told to take 
this piece of paper home. However, stamping each piece of 
paper may not be feasible, and the digital signature should 
suffice (This assumes hiding a small cryptographic key is 
easier than stopping robbers of the stamp). The random 
number is recorded along with the vote. 
 
Step 8: Tabulating the Votes. When the last voter has voted 
and the doors locked, the head poll worker goes to each 
machine in turn and enters a secret code to end the election. 
The machine then signs the stored votes to mark them as 
complete and also prints out a ticket with the results, all in 
the presence of citizen and political party observers. When all 
the votes have been collected, the recording media are put 
into a briefcase and locked. The ballot box and briefcase are 
now securely escorted to headquarters. The head poll worker 
calls up the county on the phone to report the preliminary 
results. It is not done electronically because that opens up too 
many new attack scenarios. 
 
Step 9: Publishing the Result. As soon as is practical after 
the vote-bearing storage media arrive at the county registrar 
(in the presence of the parties and citizen observers), they are 
read in on a computer whose open-source software has gone 
through our verification process. As a check, the process 
could be repeated on several computers, possibly supplied by 
different (political) parties, and combined with randomized 
manual recounts of a small percentage of the ballots. At this 
point the county will have a list of {random number, 
political-office, vote} tuples for each cast vote. 
     Many paper-based schemes have been proposed to allow 
the voter to check the integrity of the election without being 
able to sell a vote [7, 8, 14, 35]. These verification designs 
are clever in their allowing the voter to verify their vote while 
keeping their vote secret. However, voters and legislators will 
have significant trouble understanding how verification 
works and knowing their vote is actually counted. This com-
plexity precludes system adoption. Aside from verification 
complexity, receipts pose additional difficulties. Although a 
voter may trust his verifiable receipt, an attacker can still 
compromise an election in a way that does not break 
verification. Although voters may have a verifiable receipt, 
verification presents a new capability for an attacker: forging 
bogus receipts to try to get the election thrown out. Based on 
these issues, we present a simple and transparent verification 
scheme that should be understandable to most voters and 
politicians. 
     In our verification design, the county officials can post the 
entire list of voting tuples onto its website. This protects 
election integrity by allowing every voter to verify his or her 
own vote. If county officials cheat and modify 1% of the 
votes and 1000 voters check their votes, the probability of 
undetected cheating is then 0.991000 ≈ 0.004%. While this 
scheme preserves the voter’s privacy (since only the voter 
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has the random number printed after voting), voter coercion 
may become a concern (although still easily done with absen-
tee ballots). To combat voter coercion, voters can switch their 
receipt with someone from a different party and later show 
the “required” vote (similar to Rivest and Smith [38]). 
Receipt swapping can be done with either a trusted friend or 
perhaps through a receipt-swapping website. Because a swap 
may involve a bogus receipt, both participants should verify 
signed receipts themselves or use a friend to verify receipts 
for them. Unlike floating receipts where voters must check 
someone else’s vote [38], voters maintain the ability to check 
their own votes. We believe voters will have some motivation 
to check if their own votes were recorded but very little 
motivation to check on the vote of some random unknown 
person. 
     Our human-readable receipt solution does not solve the 
problem where challenges to results can erode voter confi-
dence. Performing a recount on a single challenge would be 
expensive, but ignoring a percentage of them could hurt the 
public’s trust of the voting process. If receipts are provided in 
an election, a policy that balances the voters’ trust and the ex-
pense of a recount should be established and followed.  
     A benefit of our design is that people will easily under-
stand the one-to-one mapping of their number (or detailed 
vote information) to the site. To get a scheme accepted, it is 
essential that politicians and voters be able to understand it. 
With this simple design, voters are motivated to check their 
receipt. If a valid receipt’s vote is displayed, they can assume 
their vote was counted. 
 
4. Discussion 
     This voting system allows anyone, in a simple way, to 
verify the final tally (sum the votes at the receipt’s URI) 
while providing each voter a way to verify that his own vote 
was cast for his own candidate. The voter registration 
changes of using a password and establishing a secret that 
will be used on election day helps protect the voter’s vote. No 
one can cast a vote without the necessary voting token and 
password. Election integrity is preserved by voters looking 
up their own votes on the election website. The cost of this 
simplified voting scheme is that vote selling is now possible 
with both electronic receipts and the much simpler absentee 
ballot route. As absentee ballots become more common [28], 
making the in-person voting system more complicated in 
order to prevent something that can be easily circumvented 
with an absentee ballot is a poor tradeoff. 
      Part of the challenge of voter authentication is our use of 
passwords. In our system, passwords defend against attacks 
where someone (e.g., a poll worker) records votes for regis-
tered voters that do not show up at the polling place and have 
not voted absentee. There is no way for the poll worker to 
vote without knowing (or guessing) the password. The voter 
is already required to have something to vote (Si), but the 
password makes the voter know a secret established at 

registration. However, drawbacks exist such as voters for-
getting passwords that will increase the number of provi-
sional ballots used (we initially expect this). If no voting au-
thentication mechanism is in place, poll workers can change 
election outcomes simply by voting in the place of registered 
voters that do not show up at the polling place (assuming the 
poll workers are able to get Si1). Using passwords helps 
thwart these damaging attacks. Other voting schemes are 
vulnerable to these attacks. 
     Related to the problem of verification is the trust required 
for inserting keys into a machine. Using a cryptographic key 
in a voting machine will require trusting the hardware. Our 
solution uses a TPM for its hardware protection. If the TPM’s 
endorsement key (EK) were revealed by a malicious hard-
ware manufacturer, this would undermine the election integ-
rity. However, this compromise requires a change in the man-
ufacturing process (we assume that the EK is generated in-
side the TPM). For the precinct keys, our main defense is 
splitting keys after their generation and not rejoining the keys 
until election day. One must break the machine’s hardware 
protection to retrieve the key after its machine insertion. 
     One of our main goals was simplicity in the voting 
system. Accordingly, the only additional burden on the voter 
is the requirement of using a password, a concept most voters 
are already familiar with in other contexts (voter passcodes 
have been used in a recent election in Hawaii [18]). Although 
attestation is unusual, it is conceptually simple (“Is the right 
software running on the machine?”) and is optional. Furth-
ermore, to make attestation practical and simple, voters can 
use easy-to-use smart phone software to download the 
necessary data from a website they trust. The software can do 
all of the checking and warn the voter if anything is amiss. 
     Issuing voter receipts is one area that also needs attention. 
Receipts hold great promise, but they need to be carefully 
tested before deployment. In our view, the main purpose of 
the receipt is so the voter can see that his or her vote was 
counted correctly. As a by-product, the integrity of the 
election is strengthened as each voter verifies his own vote. 
The main issue is in all the ways the verification process can 
be abused. We believe reliable verification to be an open 
problem. We have voting receipts in our system, but many 
attacks, including forged receipts, remain. Someone could 
make a fake receipt. Election officials may not know if a 
machine malfunctioned, or if the voter is cheating. As a last 
defense against forged receipts, a random paper trail audit 
that identifies legitimate receipts (e.g., a receipt must share 
the same ballot number as found on the paper trail) could 
reveal possible malfeasance. We will investigate these issues 
in future work. 
 
5. Related Work 
     Karlof et al. conducted a systems analysis [21] of 
Chaum’s visual cryptography receipt scheme [6] and Neff’s 
VoteHere [30] scheme. Although this work was primarily on 
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the system implementation of cryptographic voting protocols, 
they showed many different areas of weaknesses in these vot-
ing systems including subliminal channels, social engineer-
ing, denial of service, and other human factors. Our work al-
so concentrates on the systems aspects of a voting system, 
but our voting system provides election integrity using sim-
pler methods. 
     Some of the main functionality of an electronic voting 
system may be entrusted to a machine including printing a 
ballot, validating a ballot, and storing cryptographic keys. To 
protect against machine threats, other types of voting systems 
advocate the use of trusted hardware [10, 21, 39], and some 
suggest verification of software integrity [13]. Because a 
trusted platform module (TPM) is a hardware device that can 
be used to store secrets, we use this device in our voting 
system to make an attack on voter privacy and forged ballots 
more difficult than an attack on an unprotected machine. 
     Our attestation approach is inspired by Kauer [22] who 
first created an authenticated boot loader using skinit on an 
x86 AMD processor. Because the hardware and software of a 
voting machine is known, once we get a machine into a 
known state, we can similarly verify a meaningful configu-
ration. Later work by McCune et al. discuss applications us-
ing the TPM to protect data (sealed storage) that can be 
combined with the dynamic root of trust [27]. In our imple-
mentation, we plan to experiment with sealed storage to dis-
allow execution of the voting software unless machine-based 
attestation is successful. Although some voters may still want 
to attest the machine, this could provide additional assurance 
about the machine’s configuration even when voters choose 
not to attest. 
     The OVC voting system [23] is similar to our work in its 
use of open-source code, but there are many differences. In 
the OVC system, the voter has the option to verify the ballot 
by using another verification machine in the polling station. 
Unfortunately, there is no possibility for a voter to verify his 
vote actually counted. This system is incompatible with our 
goal of protecting election integrity and allowing individual 
voter verification. 
 
6. Conclusion 
     The procedures and techniques described above using 
open-source software and shared keys provide a basis for 
elections that people can have confidence in and which are 
much harder to tamper with. In particular, the entire system 
has to be made secure, starting at the top of the election 
chain. From election key generation to the final count, re-
dundant safeguards are built in at various places to prevent 
tampering at various places in the process. 
     By addressing the lessons of past elections with a more 
auditable registration system and better voter ID cards, elec-
tion integrity is bolstered. The fully audited registration pro-
cess helps record each voter’s registration. For election day 
authentication, voters have a relatively strong authentication 

token (Si1 on a voter ID card). When the voter goes to vote, 
they now have (Si2) and know (a password) secrets that no 
one else has in order to vote. After the voter has voted, the 
voter can use their human-readable verification receipt to 
confirm their vote was included in the final tally, and statisti-
cal paper-based audits provide an additional defense of the 
reported result’s integrity. 
     Protections that preserve election integrity should help 
guide designers of voting systems in avoiding potential at-
tacks. We mitigate several attacks with our use of open-
source code, through open and public design of the election 
procedures, and by hardware protection for cryptographic 
keys. By using these mechanisms to defend election integrity, 
a system like this may begin to approach a situation in which 
electronic voting systems can begin to be trusted. 
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