
Small Parity-Check Erasure Codes - Exploration and Observations

James S. Plank

Adam L. Buchsbaum

Rebecca L. Collins

Michael G. Thomason

DSN-05: International Conference on Dependable Systems and Networks

Yokohama, Japan

June, 2005.

plank@cs.utk.edu
alb@research.att.com
rcollins@cs.utk.edu
thomason@cs.utk.edu

http://www.cs.utk.edu/˜plank/plank/papers/DSN-2005- PBCT.html

Small Parity-Check Erasure Codes -
Exploration and Observations

James S. Plank† Adam L. Buchsbaum‡ Rebecca L. Collins† Michael G. Thomason†∗

Abstract

Erasure codes have profound uses in wide- and medium-
area storage applications. While infinite-size codes have
been developed with optimal properties, there remains a
need to develop small codes with optimal properties. In
this paper, we provide a framework for exploring very
small codes, and we use this framework to derive opti-
mal and near-optimal ones for discrete numbers of data
bits and coding bits. These codes have heretofore been
unknown and unpublished, and should be useful in prac-
tice. We also use our exploration to make observations
about upper bounds for these codes, in order to gain a
better understanding of them and to spur future deriva-
tions of larger, optimal and near-optimal codes.

1 Introduction

Erasure codes have been gaining in popularity, as wide-
area, Grid, and peer-to-peer file systems need to provide
fault-tolerance and caching that works more efficiently
and resiliently than by replication [FMS+04, GWGR04,
PT04, RWE+01, ZL02]. In a typical erasure code set-
ting, a file is decomposed inton equal sizeddatablocks,
and from these,m additionalcodingblocks of the same
size are calculated. The suite ofn + m blocks is dis-
tributed among the servers of a wide-area file system,
and a client desiring to access the file need only grabfn
of these blocks in order to recalculate the file. In this
setting,f is termed theoverhead factor, and has one as
its lower bound.

Reed-Solomon codes [Pla97, PD05, Riz97] are a
class of erasure codes that have ideal overhead factors
(f = 1). However, their computational overhead grows
quadratically withn andm, severely limiting their use.
Low-Density Parity-Check (LDPC) codes [LMS+97,
RU03, WK03] have arisen as important alternatives to

∗This material is based upon work supported by the Na-
tional Science Foundation under grants CNS-0437508, ACI-
0204007, ANI-0222945, and EIA-9972889.† Department of Com-
puter Science, University of Tennessee, Knoxville, TN, 37996,
[plank,rcollins,thomason]@cs.utk.edu ; ‡ AT&T Labs,
Shannon Laboratory, 180 Park Ave., Florham Park, NJ 07932,
alb@research.att.com .

Reed-Solomon codes. Although their overhead factors
are suboptimally greater than one, their computational
overheads are very low. Thus, the tradeoff between a
client having to download more thann blocks of data is
mitigated by the fact that recalculating the blocks of the
data is extremely fast, and in particular much faster than
Reed-Solomon codes.

The theory for LDPC codes has been developed for
asymptotics, proving that asn goes to infinity, the over-
head factor of codes approaches its optimal value of one.
For small values ofn andm (less than 1000), there is
little theory, and recent work has shown that the tech-
niques developed for asymptotics do not fare well for
smalln andm [PT04].

The purpose of this paper is to start closing this hole
in the theory. Rather than concentrate on large values
of n andm, we concentrate on very small values, us-
ing enumeration and heuristics to derive either optimal
codes for these small values, or codes that are not yet
provably optimal, but represent the lowest known up-
per bounds. We present these codes as they should be
useful to the community. Additionally, we demonstrate
some properties of small codes and present observations
about the codes that we have derived. We leave the
proof/disproof of these observations as open questions
to the community.

The significance of this work is the following:

1. To present optimal, small codes to the community.
To the authors’ knowledge, this is the first such pre-
sentation of codes.

2. To present upper bounds on larger codes to the
community. To the authors’ knowledge, this is also
the first such presentation of codes.

3. To present evaluation, enumeration and pruning
techniques that apply to small codes, and have not
been used on LDPC codes previously.

4. To stimulate thought on small codes in hope of
proving properties of codes in general that do not
rely upon classical asymptotic, probabilistic argu-
ments.

1

2 LDPC Basics

The material in this section is all well-known and has
been presented elsewhere. See [WK03] for more detail.

Although wide-area file systems use LDPC codes to
operate on blocks of data, the specification of LDPC
codes is typically on bits of data. Blocks are simply
composed of multiple bits. In this work, we use the fol-
lowing terminology:

- The number of data bits isn.
- The number of coding bits ism.
- The total number of bits isN = n + m.
- TherateR of a code isn

N
.

- The overheado of a code is the average number
bits that must be present to decode all the bits of
the data.

- Theoverhead factorf of a code iso/n.

LDPC codes are based on bipartite graphs known as
“Tanner” graphs. These graphs haveN nodesl1, . . . , lN
on their left side, sometimes termed the “message”
nodes, andm nodesr1, . . . , rm on their right side,
termed “check” or “constraint” nodes. Edges only con-
nect message and check nodes. An example graph is
depicted in Figure 1.

l1+l2+l3+l7=0

l2+l3+l4+l6=0

l2+l4+l5+l7=0 r1

r2

r3

l4

l2

l3

l1

l5

l6

l7

Figure 1: An example Tanner graph forn = 4 andm =
3.

The left-hand nodes hold the bits that are to be stored
by the application. The edges and the right-hand nodes
specify constraints that the left-hand nodes must satisfy.
The most straightforward codes are “systematic” codes,
where the data bits are stored inn of the left-hand nodes,
and the coding bits in the remainingm left-hand nodes
are calculated from the data bits and the constraints in
the right-hand nodes using exclusive-or.

For example the code in Figure 1 is a systematic one,
whose data bits may be stored in nodesl1 throughl4.
The coding bits are calculated as follows:

- Bit l6 is the exclusive-or ofl2, l3 andl4 (from r3).

- Bit l7 is the exclusive-or ofl1, l2 andl3 (from r2).
- Bit l5 is the exclusive-or ofl2, l4 andl7 (from r1).

We present decoding as an act in a storage system.
Suppose we store each of theN bits on a different stor-
age server. Then we download bits from the storage
server at random until we have downloaded enough bits
to reconstruct the data. To decode in this manner, we
start with the Tanner graph for the code, placing val-
ues of zero in each right-hand node, and leaving the
left-hand nodes empty. When we download a bit, we
put its value into its corresponding left-hand hand node
li. Then, for each right-hand noderj to which it is
connected, we update the value stored inrj to be the
exclusive-or of that value and the value inli. We then
remove the edge(li, rj), from the graph. At the end of
this process, if there is any right-hand node with only
one incident edge, then it contains the decoded value of
the left-hand node to which it is connected, and we can
set the value of this node accordingly, and remove its
edges from the graph in the same manner as if it had
been downloaded. Clearly this is an iterative process.

When all nodes’ values have been either downloaded
or decoded, the decoding process is finished. If a code
is systematic, then the data bits are held inn of the left-
hand nodes. The number of exclusive-or/copy opera-
tions required equals the number of edges in the graph.

Encoding with a systematic graph is straightforward
– simply decode using then data bits.

2.1 Determining Whether A Graph Is Sys-
tematic

The following algorithm determines whether or a not a
graph represents a systematic code. The algorithm iter-
atesm times:

• Select a left-hand node that has exactly one edge
to a constraint node. If there are no such left-
hand nodes, then the graph does not represent a
systematic code. Let the left-hand node becodei
(for i equals 1 tom), and let the constraint node be
namedconsti.

• Removeconsti and all edges incident to it.

If this algorithm iteratesm times, then the graph rep-
resents a systematic code, with them left-hand nodes
holding the coding bits, and then remaining left-hand
nodes holding the data bits. Although the proof of cor-
rectness of this algorithm is not presented here, it should
be noted that when then data nodes are downloaded,
constraint nodeconstm will have one edge to it, and this
edge is from nodecodem. Therefore, nodecodem may
be decoded. Whencodem is decoded, and all its other
edges are removed from the graph, then nodeconstm−1

has only edge to it, and this edge is from nodecodem−1.
Decoding completes in this manner.

3 Ways of Computing Overhead

#1: Brute-Force Enumeration: One can compute
overhead in a brute-force fashion, by enumerating all
N ! download sequences of bits, and averaging the num-
ber of bits requred to decode the data in each se-
quence. Obviously, this process becomes computation-
ally intractible for rather smalln andm. One may use
Monte-Carlo simulation to approximate the overhead, as
in [PT04]. However, there are alternative ways of com-
puting overhead.

#2: Recursive Overhead Calculation: In this section,
we specify a technique to compute overhead recursively.
Before making this specification, we give a more pre-
cise specification of the decoding process. We are given
a Tanner graphG with N = n + m left-hand nodes
andm right-hand nodes, each of which may hold a bit.
We assume that all the right-hand nodes have either zero
incident edges or more than one incident edge. If a left-
hand node has zero edges, then we assume that we know
its value as a result of a previous decoding phase, but
that we have not downloaded it.

When we start, we set the value of all right-hand
nodes to zero and leave the values of all left-hand nodes
blank.

To decode, we define two operations on graphs:as-
signing a value to a node, anddownloadinga node.
Both operations are defined only on left-hand nodes.
We start with the former. Given a left-hand nodeli,
when the value of that node becomes known, it should
be assigned. When it is assigned, for each right-hand
noderj to which li is connected,rj ’s value is set to
the exclusive-or of its previous value andli’s value, and
then the edge(li, rj) is removed from the graph. If there
is any right-hand noderj which now has only one inci-
dent edge, then the value of the left-hand node to which
rj is connected may now be assigned to be the value
of rj . Before assigning the value, however, the edge
between that node andrj should be removed, andrj

should also be removed from the graph. Note: assign-
ing one node’s value can therefore result in assigning
many other nodes’ values.

To downloada node, if the node’s value has already
been assigned, then the node is simply removed from
the graph. Otherwise, the value of the node is assigned
to its downloaded value, and it is then removed from the
graph.

When the values of all left-hand nodes have been as-
signed, the decoding process is finished.

Recursively computing the overheado(G) of graph
G proceeds as follows. If all nodes have zero edges, then
the overhead is zero. Otherwise, we simulate download-
ing each left-hand node of the graph and compute the av-
erage overhead as the average of all simulations. When
we simulate downloading a nodeli, we assign its value
(if unassigned), potentially decoding other nodes in the
graph, and remove the node from the graph. We are then
left with a residualgraph,R(G, li). We can recursively
determineR(G, li)’s overhead. Then, the equation for
determining a graph’s overhead (if not zero), is:

o(G) =

(

N
∑

i=1

(1 + o(R(G, li)))

)

/N.

#3: Using Residual Graphs: A third way to compute
overhead is to look at a variation of the residual graph,
presented above. LetSn(G) be the set of all subsets of
the left-hand nodes ofG that contain exactlyn nodes.
Let S ∈ Sn(G). We define the residual graphRS to
be the graph that remains when all the nodes inS and
their accompanying edges are removed fromG. Note
that unlike the residual graph above, we do not perform
decoding when we remove nodes from the graph.RS

simply contains the nodes inG that are not inS.
We may calculate the overhead ofRS in either of

the two manners described above. Let that overhead
be o(RS). Note: the first step in doing so will be to
decode right-hand nodes that are incident to only one
left-hand node, and this overhead may well be zero (for
example,o(R{l1,l2,l3,l4}) = 0 for the graph in Figure 1).

Now, the overhead of a graphG may be defined asn
plus the average overhead of the residual graphs that re-
sult when every subset ofn nodes is removed fromG.
Formally:

o(G) = n +

(
∑

S∈Sn(G) o(RS)
(

N
n

)

)

.

Note that this use of residual graphs is similar to us-
ing stopping sets[DPT+02] for overhead analysis.

4 Special Cases: m = 1 and n = 1

Whenm = 1, there is one coding node ton data nodes,
and the optimal code is a straight parity code:Gn

m=1 =
({l1, . . . , ln+1, r1}, {(l1, r1), . . . , (ln+1, r1)}). One
may easily prove using residual graphs thato(Gn

m=1) =
n. Whenevern nodes are removed fromGn

m=1, the
residual graph contains one node with one edge tor1.
Clearly, the overhead of that graph is zero, and therefore
the overhead ofGn

m=1 is the optimal valuen.
When n = 1, there is one data node tom cod-

ing nodes, and the optimal code is a replication code:

Gn=1
m = ({l1, . . . , lm+1, r1, . . . , rm}, En=1

m), where
En=1

m = {(l1, ri)|1 ≤ i ≤ m} ∪ {(li + 1, ri)|1 ≤ i ≤
m}.

It is straightforward to prove thato(Gn=1
m) = 1.

Again, we use residual graphs. Supposel1 and all its
edges are removed from the graph. Then the residual
graph has exactly one edge to every right-hand node,
and it may be decoded completely. Suppose instead
that li6=1 and its one edge is removed from the graph.
The residual graph has exactly one edge tori=1, which
is connected tol1. Therefore,l1 and subsequently all
other nodes may be decoded. Since the overhead of all
residual graphs is zero,o(Gn=1

m) = 1.

5 Optimal and Near-Optimal
Codes for m ∈ {2, 3, 4, 5}

In this section, we use residual graphs to derive closed-
form expressions for the overhead of a graphG which
hasm right-hand nodes, andm is small (≤ 5). We
introduce a new nomenclature for this derivation. We
note that theN left-hand nodes of any graph may be
partitioned into2m − 1 sets, depending on the right-
hand nodes to which they are connected. We label these
setsC1, . . . , C2m−1, and specify thatli ∈ Cj if and only
if:

j =

m
∑

k=1

2k−1E(i, k),

where E(i, k) = 1 if (li, rk) is an edge inG, and
E(i, k) = 0 otherwise. Therefore, nodel1 in Figure 1 is
an element ofC2, l2 ∈ C7, andl7 ∈ C3.

Let ci = |Ci|. Then, one may uniquely specify a
graphG by the values of eachci, rather than by nodes
and edges. For example, the graph in Figure 1 may be
specified as (1, 1, 1, 1, 1, 1, 1), since there is one of each
of the seven different kinds of left-hand nodes.

For later discussion, we will also define the func-
tion e(i) to equal the number of one bits in the bi-
nary representation of the integeri. Therefore, if a
nodel ∈ Ci, thenl has exactlye(i) edges. Finally, we
define anEdge Class, Ej to be the union of allCi such
that e(i) = j. We can then discuss the collection of
nodes that have the same number of edges as the nodes
in the same edge class. We will also group together all
counts of nodes in edge classj as allci ∈ Ej .

5.1 Optimal Codes for m = 2

When m = 2, there are only three different types of
left-hand nodes – those inC1, C2, andC3. Whenn
nodes are downloaded, only two remain, and there are
only six possible residual graphs, which we specify by

their values ofci: (1, 1, 0), (1, 0, 1), (0, 1, 1), (2, 0,
0), (0, 2, 0), and (0, 0, 2). The first three of these con-
tain one right-hand node with exactly one edge, which
means each of these three may be completely decoded.
The remaining three cannot be decoded until one of the
two left-hand nodes is downloaded. Therefore, the over-
head of the first three graphs is zero, and the overhead
of the remaining three graphs is one.

Let G = (c1, c2, c3). To calculate overhead, we note
that there are

(

c1

2

)

ways to downloadn nodes and have
(2, 0, 0) as a residual graph. Likewise, there are

(

c2

2

)

ways to have (0, 2, 0) as a residual graph, and
(

c3

2

)

ways
to have (0, 0, 2) as a residual graph. Therefore, the over-
head ofG is:

o(G) = n +

(

(

c1

2

)

+
(

c2

2

)

+
(

c3

2

)

(

N
n

)

)

.

SinceN = n+2, we note that
(

N

n

)

=
(

n+2
2

)

, and we
may simplifyo(G) as follows:

o(G) = n +
c2
1 + c2

2 + c2
3 − (n + 2)

(n + 2)(n + 1)
.

Since n is a constant, in order to minimize the
overhead, a graph must minimizec2

1 + c2
2 + c2

3. It
is easy to prove that this quantity is minimized when
the differences among theci are minimized. There-
fore, any graphG of the form (x,y,z), wherex, y, z ∈
{bN

3 c, d
N
3 e} andx + y + z = N , is an optimal graph

for that value ofN .

5.2 Computing Overhead for m = 3

Whenm = 3, there are seven potential types of left-
hand nodes, denoted byC1, . . . , C7, and a graphG may
be uniquely specified by its values ofc1 throughc7.
Supposen nodes are removed fromG, leaving a resid-
ual with just three left-hand nodes. There are 59 resid-
uals that may result that cannot be decoded completely.
We enumerate them, their overheads, and the number of
ways that they may be generated fromG’s values ofci,
below:

Residuals with three identical left-hand nodes: An
example is (3,0,0,0,0,0,0). Clearly there are seven types
of these, one for eachCi, and the overhead of decoding
this type of residual is 2. GivenG, the number of these
types of residual is

∑7
i=1

(

ci

3

)

.
Residuals with exactly two identical left-hand

nodes: Examples are (2,1,0,0,0,0,0) and (0,1,0,2,0,0,0).
There are 42 types of these, six for eachCi, and
the overhead of decoding this type of residual is 4/3.

GivenG, the number of these types of residual is:

7
∑

i=1

7
∑

j=1,j 6=i

(

ci

2

)

cj =

7
∑

i=1

(

ci

2

)

(N − ci).

(0,0,1,0,1,1,0): This graph has exactly two edges en-
tering each right-hand node. Its overhead is one, and the
number of these graphs isc3c5c6.

(1,0,0,0,0,1,1), (0,1,0,0,1,0,1) and (0,0,1,1,0,0,1):
As above, these graphs have exactly two edges enter-
ing each right-hand node. Their overhead is one, and
the number of these graphs isc1c6c7 + c2c5c7 + c4c3c7.

(1,1,1,0,0,0,0), (1,0,0,1,1,0,0) and (0,1,0,1,0,1,0):
These graphs have two right-hand nodes with two edges
and one with zero. Their overhead is one, and the num-
ber of these graphs isc1c2c3 + c1c4c5 + c2c4c6.

(0,0,1,0,1,0,1), (0,0,1,0,0,1,1) and (0,0,0,0,1,1,1):
These graphs have two right-hand nodes with three
edges and one with two. Their overhead is one, and the
number of these graphs isc3c5c7 + c3c6c7 + c5c6c7.

Therefore, the overhead of a graph withm = 3 is
given by the following rather tedious equation:

o(G) = n +
2
∑7

i=1

(

ci

3

)

+ 4
3

∑7
i=1

(

ci

2

)

(N − ci)
(

N
3

) +

c3c5c6 + c1c6c7 + c2c5c7 + c4c3c7 + c1c2c3
(

N

3

) +

c1c4c5 + c2c4c6 + c3c5c7 + c3c6c7 + c5c6c7
(

N
3

) .

Unlike for m = 2, minimizing this equation is not
straightforward. We discuss how we enumerate graphs
to determine the optimal ones below in Section 5.4.

5.3 The Overhead of Arbitrary m

Whenm > 3, there are far too many residual graphs
with non-zero overhead to enumerate by hand. In-
stead, we may enumerate them electronically and cal-
culate their overheads. Using such an enumeration,
we may calculate the overhead of any graphG =
(c1, . . . , c2m−1) as follows. Given a residual graphR =
(r1, . . . , r2m−1), the number of ways thatR may result
from downloadingn bits fromG is:

2m−1
∏

i=1

(

ci

ri

)

This will be the product of at mostm terms, since
∑2m−1

i=1 ri = m.

Thus, ifRm is the set of all residual graphs with non-
zero overhead, then the overhead of a graphG is:

o(G) = n +





∑

R∈Rm

(

o(R)
∏2m−1

i=1

(

ci

ri

)

)

(

N
m

)



 .

Of course, the size ofRm increases exponen-
tially, so this technique is only practical for smallm.
Whenm = 4, there are 2,617 residual graphs with non-
zero overhead, and calculating the overhead of a graph
takes roughly 2 milliseconds on a Dell Precision 330.
Whenm = 5, there are 295,351 residual graphs with
non-zero overhead, and calculating the overhead of a
graph takes roughly 128 milliseconds. Whenm = 6,
there are 105,671,841 residual graphs with non-zero
overhead, and calculating the overhead of a graph is
too expensive for an exhaustive exploration of the type
that we are pursuing. Thus, in the data that follows, we
limit m to be less than or equal to 5.

5.4 Finding Optimal and UBp Codes for
m ∈ {3, 4, 5}

Whenm > 2, minimizing o(G) mathematically is not
straightforward and remains an interesting open prob-
lem. Here we use enumeration and heuristics to find the
best codes. Unfortunately, graph enumeration is also ex-
ponential inn andm; therefore, for all but the smallest
values ofn andm, we prune the search using a heuris-
tic that we callperturbationby p elements. We take the
best code forn− 1 and generate all codes forn that can
be derived from then − 1 code by subtracting up top
elements from the variousci, and adding up top + 1
elements to the otherci. For example, the optimal code
for m = 3 and n = 32 is (6,6,5,6,4,4,4). The opti-
mal code forn = 33, (6,6,5,6,5,5,3), is derived from the
code forn = 32 by subtracting one fromc7, and adding
one toc5 andc6 - a perturbation withp = 1. We use this
technique to generate what we call UBp codes, which
stands forUpper Bound, perturbed byp.

We generated optimal and UBp codes for the values
of m andn listed in Table 1. The total CPU time to
generate these 2910 codes is 681 days. Fortunately, the
enumerations and perturbations are easily parallelizable,
and we were able to enlist 89 machines of varying fla-
vors and speeds to cut that time by a factor of 20.

The UBp codes are not provably optimal. We believe
that for each value ofm, there is a minimum value ofp
for which all UBp codes will be provably optimal, and
thatp will grow with m. For example, form = 3 in our
tests, the maximum value ofp for which UBp 6=UBp−1

is two. Form = 4, that value is 3, and only occurs
in one case (derivingn = 137 from n = 138). Proving

m Optimal Codes UBp Codes p CPU time /
UBp code

3 n ≤ 50 n ≤ 1750 6 10s
4 n ≤ 10 n ≤ 1000 4 3h 49m
5 n ≤ 3 n ≤ 160 2 78h 13m

Table 1: Range of optimal and UBp codes generated

what this value is for a given value ofm is an open ques-
tion. We are confident that form ≤ 4 in our tests, our
UBp codes are optimal. We doubt that the UB2 codes
for m = 5 are (in fact, a counterexample is given in
Section 6 below). Unfortunately, we cannot call them
optimal until optimality is proved, and thus they repre-
sent the upper bounds of the best codes known.

The 2910 codes that we derived are too numerous to
present in their entirety here. However, since they are
important, we have published them in Technical Report
form in [Pla04].

6 Observations

We discuss some of the collective characteristics of our
UBp codes here. This discussion is in the form of ques-
tions that arise naturally when one explores these codes.

What are the overheads of the optimal and UBp

codes? To answer this question, we plot the overhead
factors of the best codes forn ≤ 100 in Figure 2. For
each value ofm, the best overhead factor reaches its
high point atn = 2, and then descends to approach 1
as n grows. In general, the overhead factor for each
value ofn is higher whenm is larger. This is not strictly
true, however. For example, whenn = 4 the optimal
overhead factor is 1.0955 whenm = 4, whereas the
UB2 code form = 5 has an overhead factor of 1.0952.

1 10 100
n

1.00

1.05

1.10

1.15

O
ve

rh
ea

d
F

ac
to

r

m = 5
m = 4
m = 3
m = 2

Figure 2: Overhead factors of optimal and UBp codes
for m ∈ {2, 3, 4, 5} andn ≤ 100.

There are other interesting features of Figure 2. First,
each curve is composed of three segments: (1) A rising

from an overhead factor of 1 whenn = 1 to a maximum
value, which in each case is whenn = 2; (2) A period
where the factor follows no particular pattern; and (3) A
gradual descending of the overhead factor back down to
one asn grows further. It is an open problem to provide
a better characterization of the optimal overhead. Note
that the curve form = 4 rises and falls three distinct
times.

Are the best graphs regular? Regularity in LDPC’s
is discussed in Lubyet al’s seminal paper on Tor-
nado codes [LMS+97] and thereafter separated into left-
regularity and right-regularity [RU03, Sho99]. A graph
is left-regular if each left-hand node has the same num-
ber of incident edges. We define a relaxed property,
calledloose left-regularity(LLR) to be when each left-
hand node of a graph has eitheri or i+1 edges for some
value of i. Right-regularity and loose right-regularity
(LRR) are defined similarly, except for right-hand nodes
rather than left-hand nodes.

Of the 2910 best graphs form ∈ {3, 4, 5}, none
are left-regular, and only one is LLR. This is the code
for n = 6, m = 4, which has four nodes inC1, and six
in C2. The remaining 2909 graphs are not LLR. Left-
regularity as a property for optimality was dismissed
early on in [LMS+97], so these results do not come as a
surprise.

0 20 40 60 80 100
n

0

20

40

60

A
ve

ra
ge

 #
 o

f
ed

ge
s

in
to

 r
ig

ht
-h

an
d

no
de

s

m = 2
m = 3
m = 4
m = 5

Figure 3: Average number of incoming edges for each
right-hand node.

Right-regularity, however, is a different story.Ev-
ery one of the 2910 best graphs is either right-regular
or LRR. As plotted in Figure 3, the average number of
edges into each right-hand node follows a linear trend
for each value ofm. Fitting the data to a line, we get
that the average number of edges into each right hand
node is0.67n for m = 2, 0.54n for m = 3, 0.47n
for m = 4, and0.46n for m = 5.

Do the various ci for best graphs roughly equal
each other? Whenm = 2, we proved that in an opti-
mal graph, noci could differ fromcj by more than one.
It is logical to see if this trend extrapolates to largerm.
The answer is that it does not. The first graph to exhibit

0 500 1000 1500
n

0.0

0.2

0.4

0.6
P

ro
ba

bi
lit

ie
s

m = 3

Lambda-1 Lambda-2

0 200 400 600 800 1000
n

0.0

0.2

0.4

0.6

m = 4

Lambda-3

0 50 100 150
n

0.0

0.2

0.4

0.6

m = 5

Lambda-4 Lambda-5

Figure 4: Values of theΛ vectors for best graphs.

this property form = 3 is whenn = 18, and the op-
timal graph is (4,3,3,3,3,3,2) with an overhead factor of
1.0326 as compared to (3,3,3,3,3,3,3), with an overhead
factor of 1.0329. Asn increases for all values ofm > 2,
this trend becomes more pronounced. For example, the
best graph form = 3 andn = 1750 hasc1 = 289,
andc7 = 188. Form = 4 andn = 200, the best graph
hasc1 = 20, andc15 = 6. Looking at the equation for
overhead in Section 5.2, it is easy to see whyc7 would
have a lower value than the rest, as it is present in six
of the terms in the bottom fraction, whereas the counts
in E2 are present in five terms each, and the counts inE1

are present in only three each.
A different property that we define here isEdge Class

Equivalence: If e(i) = e(j), thenci and cj differ by
at most one. In other words, the counts of distinct
nodes in each edge class are roughly equal. For ex-
ample, the UB6 graph form = 3 and n = 1001 is
(166,165,133,165,133,134,108). This graph has edge
class equivalence, since the counts of nodes inE1 is
equal to 165 or 166, the counts of nodes inE2 is equal
to 133 or 134, and the count of nodes inE3 is 108. As
with loose right-regularity,everyone of the 2910 best
graphs has edge class equivalence.

Since each graph has edge class equivalence, it
makes sense to look at the sizes of the variousEi.
Borrowing from the classical definition of Tornado
Codes [LMS+97], we can define a vectorΛ of graphG
to be(Λ1, Λ2, . . . , Λm), whereΛj is the probability that
a node inG is an element ofEj . We plot the values ofΛ
for the 2910 best graphs below in Figure 4.

In the graphs form = 3 andm = 4, theΛ vectors
clearly converge to constants asn grows. Them = 5
graph may exhibit this trend as well, but without looking
at higher values ofn, we can only speculate. We explore
this trend a little further below.

Do the values of ci or |Ei| grow monotonically
with n? For m = 2, they do. However, for the
other values ofm, they do not. Otherwise, UB0
graphs would all be optimal. As an example, con-
sider m = 3 and n = 1470, whose best graph is
(243,243,195,243,195,195,159). The best graph forn =
1471 is (243,243,196,242,196,196,158)– bothc4 andc7

are less than their values forn = 1470. Even more
striking, whenm = 4 andn = 141, the best graph has
c15 = 5. For n = 142, c15 = 4, and forn = 143,
c15 = 3.

For a given m, is the optimal graph for n a sub-
graph of the optimal graph for n + 1? For m = 2,
the answer is yes, which may be seen easily by look-
ing at how the variousci grow. However, form > 2,
in general, the answer is no. This is because theci do
not grow monotonically. However, in many specific in-
stances, the answer is yes. Quantifying this, of the 1,749
optimal graphs form = 3 (with n > 1), 1,741 of them
are supersets of the optimal graphs forn−1. Form = 4,
900 of the 999 graphs are supersets, and form = 5, the
number is only 114 of 159.

Can anything be learned by modeling the ci as
continuous variables? Suppose we make the assump-
tion that theci are continuous variables, and that allci

in the same edge class are equal to each other. More-
over, as implied by the graphs in Figure 4, we assume
that the values ofΛ converge to constants asn → ∞.
Then, using the last 200 values ofn in each case, we
average the values ofΛ and display them in Table 2.
For m = 2 andm = 3, we used the Maple software
package to corroborate theΛ values directly from their
overhead equations. With the corroboration, we were
also able to prove thato(G) has a local minimum value
when the graphs are edge class equivalent. Form = 4
andm = 5, the equations (fourth and fifth degree poly-

nomials with three and four variables respectively) were
too complex for Maple to minimize.

m Λ1 Λ2 Λ3 Λ4 Λ5

2 0.6667 0.3333
3 0.4940 0.3983 0.1077
4 0.3879 0.4030 0.1820 0.0271
5 0.3210 0.3909 0.2215 0.0620 0.0047

Table 2: Values of theΛ vectors when theci are contin-
uous variables and display edge class equivalence.

We can use theΛ vectors in Table 2 as a second
heuristic to compute graphs. We do this by multiply-
ing eachΛj by N , and rounding to the nearest integer to
yield the various|Ej |. If t =

∑m

j=1 |Ej | 6= N , then we
can sortNΛj − |Ej |, and either add one to the biggest
N − t counts or subtract one from the smallestt − N
counts. Then we enumerate all graphs that exhibit both
loose right-regularity and edge class equivalence, and
keep track of the best graph. This results in far fewer
graphs being generated than by perturbation.

For example, whenm = 5 andn = 402, the |Ej |
are (131,159,90,25,2). Since there are 10 values each
of ci ∈ E3, each of them will equal 90. Similarly, each
of the five values ofci ∈ E4 will equal 5, andc31 = 2.
The only values that require enumeration are the 5 com-
binations ofci ∈ E1 where four equal 26 and one equals
27, and the 10 combinations ofci ∈ E2 where nine
equal 16, and one equals 15. That makes 50 graphs,
of which only 20 are LRR. The maximum number of
graphs that we enumerated in this way was 59,940,
for m = 5 andn = 290. The average number of graphs
generated for alln ≤ 1, 000 was 4,007. This is as com-
pared to over 2 million graphs per value ofn when gen-
erating UB2.

In Figure 5, we compare the overheads of the codes
created using theseΛ vectors with the UBp codes. All
three graphs are similar — for very smalln (less than
10), the codes created with theΛ vectors have signifi-
cantly higher overheads than their optimal counterparts.
However, asn grows, the two techniques produce simi-
larly performing codes. Interestingly, in one case (m =
5, n = 57), theΛ-generated code has a lower overhead
factor (1.022258) than the UB2 code (1.022263). This
proves that as suspected, the UB2 codes are not optimal
for m = 5. Certainly, given the computational com-
plexity of generating UB2 codes form = 5, for moder-
ate to large values ofn, the technique using theΛ vec-
tor is preferable. We include the graphs so generated
for n ≤ 1000 in Technical Report [Pla04].

7 Optimal Graphs for n = 2

We switch our focus now from fixedm to fixedn. While
the graphs forn = 2 have greater variety than for
m = 2, they have one practical limitation — the values
of the coding bits are constrained to three distinct values
— the value of the first data bit, the value of the second
data bit, or the exclusive-or of the two data bits. When
downloading, it is only necessary to download two of
these distinct values, after which the data bits (and there-
fore the rest of the coding bits) may be determined.

A graph that mirrors this line of thinking has the two
data bits inl1 andl2. The remaining left-hand nodes are
coding nodes, and each has exactly one edge fromli to
ri−2. The constraint nodes are partitioned into three sets
— those whose coding bits equall1, those whose coding
bits equall2, and those whose coding bits equall1 ⊕ l2.
Node l1 will have an edge to every constraint node in
the first and third groups, and nodel2 will have an edge
to every constraint node in the second and third groups.
The left-hand nodes whose values equall1 compose a
setD1, and consist ofl1 itself plus the coding nodes that
equall1. There ared1 nodes in this set.D2 andd2 are
defined similarly, includingl2 and all coding nodes that
equall2. Finally, D3 is composed of the coding nodes
that equall1 ⊕ l2, and there ared3 of these nodes.

Suppose we downloadx bits, and all bits are from the
same set (D1, D2, or D3). Then the graph will remain
undecoded, since only nodes that belong in that group
will be determined. As soon as we have downloaded
nodes from two different sets, we may decode the entire
graph.

Let us focus solely on downloading bits in order. De-
fine pd1,i to be the probability that the firsti bits down-
loaded come from nodes inD1, and that thei + 1-st
bit does not come from nodes inD1. Eachpd1,i for
1 ≤ i ≤ d1 is equal to:

pd1,i =

(

d1

m + 2

)(

d1 − 1

m + 2 − 1

)

...

(

d1 − (i − 1)

m + 2 − (i − 1)

)(

m + 2 − d1

m + 2 − i

)

=

(

m+1−i
d1−i

)

(

m+2
d1

) .

We may usepdx,i for each1 ≤ i ≤ dx to calculate
the expected value of the overhead:

o =

d1
∑

i=1

(i + 1)pd1,i +

d2
∑

i=1

(i + 1)pd2,i +

d3
∑

i=1

(i + 1)pd3,i

=
m + 3

m + 3 − d1
+

m + 3

m + 3 − d2
+

m + 3

m + 3 − d3
− 2.

1 10 100 1000
n

1.0

1.1

1.2

O
ve

rh
ea

d
F

ac
to

r m = 3 UB_6
m = 3 using Lambdas

1 10 100 1000
n

1.0

1.1

1.2 m = 4 UB_4
m = 4 using Lambdas

1 10 100 1000
n

1.0

1.1

1.2 m = 5 UB_2
m = 5 using Lambdas

Figure 5: Overhead factors of codes created with theΛ vectors from Table 2 as compared to the UBp codes.

Simple math yields that this equation is minimized
when d1, d2, and d3 differ by at most one. If we
setd1 = d2 = d3 = m+2

3 , the equation for overhead be-
comes(5m + 13)/(2m + 7), whose limit asm → ∞ is
2.5. Interestingly, this means that even though the rate of
these codes approaches zero, the overhead approaches a
constant value – 2.5.

8 Graphs for n = 3: A limitation
of having only m constraints

Extrapolating from the previous section, supposen = 3,
and our three data bits are labeledb1, b2 andb3. Now,
there are only seven possible values for a node:b1, b2,
(b1⊕ b2), b3, (b1⊕ b3), (b2⊕ b3), and(b1⊕ b2⊕ b3). Of
the
(

7
3

)

= 35 combinations of three distinct values, there
are seven that cannot decode the three data bits:[b1, b2,
(b1 ⊕ b2)], [b1, b3, (b1 ⊕ b3)], [b2, b3, (b2 ⊕ b3)], [b1,
(b2⊕ b3), (b1⊕ b2⊕ b3)], [b2, (b1⊕ b3), (b1⊕ b2⊕ b3)],
[b3, (b1 ⊕ b2), (b1 ⊕ b2 ⊕ b3)], and[(b1 ⊕ b2), (b1 ⊕ b3),
(b2 ⊕ b3)].

Any combination of four distinct values will allow
one to decode the three data bits. Therefore, if we
haven = 3 andm = 4, and we encode by having each
of the seven bits contain a distinct value, then we can
always decode with three bits when we do not receive
one of the 3-bit combinations listed above. Otherwise,
we will decode in four bits. The overhead of such a de-
coding scheme is28∗3+7∗4

35 = 112
35 = 13

5 = 3.2.
Unfortunately, the optimal graph forn = 3 andm =

4 has an overhead of11335 = 3.2286, meaning that the
optimal graph does not decode optimally! To see why
this is true, consider the graph in Figure 6. This graph’s
overhead is 3.2286. Suppose we download nodes D, E,
and G. Since(b1 ⊕ b2) ⊕ (b1 ⊕ b3) ⊕ (b1 ⊕ b2 ⊕ b3) is
equal tob1, we should be able to decode all the bits from
these three values. However, when we remove nodes
D, E, and G from the graph, all constraint nodes have
more than one edge still incident to them, and we cannot
decode. This is where the extra135 of overhead comes

from, and there isno graph with seven left-hand nodes
and four right-hand nodes that avoids this problem.

b1+b2+b3 b1+b2

b2+b3b1

b3

b2

b1+b3

BA

D

F

C

G

E

Figure 6: An optimal graph forn = 3 andm = 4.

To fix this, suppose we add a fifth constraint to the
graph, which is connected to nodes D, E, and G. Now,
although the graph no longer fits the standard Tanner
Graph description (nor does it fit our definition of a Sys-
tematic graph), it does decode optimally. We do not
explore this fact or these codes further; however, we
present it here as a curiosity, and as a seed of future work
on graph-based coding.

9 Related Work/Brief Discussion

Since the landmark Tornado Code paper in
1997 [LMS+97], the focus of most LDPC researchers
has been achieving asymptotic optimality. There are
rare exceptions, such as a paper analyzing certain
classes of finite codes [DPT+02], a paper defining
classes of sub-optimal codes that perform well in prac-
tice [RN04], and our previous foray into Monte-Carlo
generation and analysis of finite-length codes [PT04].

The exceptions are rare, because the asymptotic is an
easier case in which to succeed. To illustrate this, con-
sider Figure 4. Whereas the simple graph construction
using theΛ vectors fails to produce graphs that perform
nearly optimally for smalln, asn grows this graph con-
struction method performs very well. It would not be
too difficult to prove that the overhead factors of these
graphs indeed approach one asn → ∞, meaning that
they are asymptotically optimal. Determining true op-

timality for finite n remains an open question, one that
we will continue to address.

An important question to ask, however, is:How
important is optimality? For example, whenm =
4 and n = 100, the overhead of the UB4 code is
101.01073, and the overhead of the code generated by
the Λ vector is 101.01088. Are there any scenarios
in which that extra 0.00015 is significant? Likely not.
However, consider the case wherem = 4 andn = 4,
and a 1 GB file is broken up into 256 sets of eight
blocks (4 data and 4 coding) that are distributed among
faulty servers in the wide-area. When a client tries
to download this file, the difference between the opti-
mal overhead of 4.382 and the suboptimal overhead of
4.471 (generated by theΛ vector) will be significant in-
deed. Until true optimality is determined, suboptimal
constructions such as the UBp andΛ codes in this paper
will be extremely useful. However, until optimal, finite
codes are fully understood, the field of LDPC codes will
continue to be an open research area.

10 Conclusion

We have performed an exploration of optimal and
nearly-optimal LDPC erasure codes for small values
of n andm. We have detailed three mechanisms for de-
termining the overhead of a code exactly, and used these
determinations, plus enumeration techniques to generate
optimal codes form = 2 andn = 2. Form ∈ {3, 4, 5},
we have generated codes with the best known upper
bounds forn less than or equal to 1750, 1000, and 1000
respectively.

As part of our exploration, we have made the follow-
ing observations, which should be an aid to others who
need to explore these codes:

- Optimal codes are not left-regular.
- However, the best codes appear to be loosely right

regular.
- They also appear to have a property that we call

edge class equivalence. Using the above two prop-
erties can be a great aid in pruning enumerations in
order to discover good codes.

- The various counts of distinct types of left-hand
nodes do not have to equal each other for a graph
to be optimal.

- In the best graphs with a fixedm, the Λ vector
of edge count probabilities, which is the backbone
of classic LDPC coding theory [LMS+97, RU03,
WK03], appears to converge to a constant asn →
∞. This vector may also be used to generate graphs
that perform very close to optimal asn grows.

- For n > 2, the iterative decoding technique of
LDPC’s cannot decode optimally. It is an open

question of how to modify the standard definition
of LDPC’s so that they can decode better.

The quantification of optimal parity check codes for
arbitrary values ofn andm remains an open question.
In this paper, we have defined uppoer bounds, and we
have helped to narrow the range ofn andm for which
we don’t know optimality. We will continue work to
narrow this range by trying to understand the properties
and structure of optimal codes, and using them to prune
the search so that it is a tractable endeavor.

References
[DPT+02] C. Di, D. Proiettiet al—. Finite-length analysis of low-density

parity-check codes on the binary erasure channel.IEEE Trans. on
Inf. Thy., 48:1570–1579, 2002.

[FMS+04] S. Frolundet al. A decentralized algorithm for erasure-coded vir-
tual disks. InDSN-04: Int. Conf. on Dep. Syst. and Net., 2004.

[GWGR04] G. R. Goodsonet al. Efficient byzantine-tolerant erasure-coded
storage. InDSN-04: Int. Conf. on Dep. Syst. and Net., 2004.

[LMS+97] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and
V. Stemann. Practical loss-resilient codes. In29th Ann. ACM
Symp. on Thy. of Comp.,, pages 150–159, 1997. ACM.

[PD05] J. S. Plank and Y. Ding. Note: Correction to the 1997 tuto-
rial on reed-solomon coding.Software – Practice & Experience,
35(2):189–194, February 2005.

[Pla97] J. S. Plank. A tutorial on Reed-Solomon coding for fault-
tolerance in RAID-like systems.Software – Practice & Experi-
ence, 27(9):995–1012, September 1997.

[Pla04] J. S. Plank. Enumeration of small, optimal and near-optimal
parity-check erasure codes. Tech. Rep. UT-CS-04-535, Depart-
ment of Computer Science, University of Tennessee, November
2004.

[PT04] J. S. Plank and M. G. Thomason. A practical analysis oflow-
density parity-check erasure codes for wide-area storage applica-
tions. InDSN-04: Int. Conf. on Dep. Syst. and Net., 2004.

[Riz97] L. Rizzo. Effective erasure codes for reliable computer commu-
nication protocols.ACM SIGCOMM Computer Communication
Review, 27(2):24–36, 1997.

[RN04] V. Roca and C. Neumann. Design, evaluation and comparison
of four large FEC Codecs, LDPC, LDGM, LDGM staircase and
LDGM triangle, plus a Reed-Solomon small block FEC Codec.
Technical Report RR-5225, INRIA Rhone-Alpes, June 2004.

[RU03] T. Richardson and R. Urbanke. Modern coding theory. Draft from
lthcwww.epfl.ch/papers/ics.ps , 2003.

[RWE+01] S. Rheaet al. Maintenance-free global data storage.IEEE Internet
Comp., 5(5):40–49, 2001.

[Sho99] M. A. Shokrollahi. New sequences of linear time erasure codes ap-
proaching the channel capacity.Proc. of AAECC-13, LNCS 1719,
pages 65–76, New York, 1999. Springer-Verlag.

[WK03] S. B. Wicker and S. Kim.Fundamentals of Codes, Graphs, and
Iterative Decoding. Kluwer Acad. Publ., Norwell, MA, 2003.

[ZL02] Z. Zhang and Q. Lian. Reperasure: Replication protocol using
erasure-code in peer-to-peer storage network. In21st IEEE Symp.
on Rel. Dist. Sys. (SRDS’02), pages 330–339, 2002.

