Lecture 10

Ab initio gene finding



Topology

« Some characteristics: number of
nodes, alphabet, subset of edges

* We want to exploit domain knowledge
— Limits number of states / edges

— Still expressive enough to model
relationships

* Length distributions (Durbin 3.4)
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EM4(R)=1 eM5(M) =5
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http://genome.jouy.inra.fr/doc/genome/suite-logicielle/gcg-11.1/html/figure/hmmessay_2.gif



108 5 Profile HMMs for sequence families
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Figure 5.4 A hidden Markov model derived from the small alignment
shown in Figure 5.3 using Laplace’s rule. Emission probabilities are shown
as bars opposite the different amino acids for each match state, and tran-
sition probabilities are indicated by the thickness of the lines. The 1 > 1
transition probabilities times 100 are shown in the insert states. (Figure
generated automatically using the SAM package. )



Uses of probabilistic sequence
models/HMMs

* Segmentation
* Multiple alignment using profile HMMs

* Prediction of sequence function (gene
family models)

« ** Gene finding **



Review

e Gene

— A sequence of nucleotides that are
translated into proteins

* Gene prediction

— Given the model of a gene above, determine
the beginning and end positions of all genes
In a genome.



Central dogma of
molecular biology

* Information is stored in DNA

* Genome is processed into messenger
RNA molecules (transcription)

 RNA molecules are processed to form
proteins (translation)



General facts about
the genetic code

* There is inherent redundancy; 64 possibilities
and 20 amino acids

« Most of the “flexibility” is in the third position

— “wobble” position

* Deletions that are not multiples of 3 change
the resulting amino acid



DNA CCTGAGCCAACTATTGATGAA
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Source and interesting link:
http://www.bioscience.org/atlases/genecode/genecode.htm



Facts about gene finding

Prediction is usually easier in prokaryotes

Small fraction of most genomes is genes
— 3% of the human genome

Many false signals

Long introns and small exons
— Difficult for mathematical models



In more detail Startcodon  codons  ponor site
(color ~state) ATGCCCTTCTCCAACAG

Transcription
start
' Exon

/ ’Z """ (Left)
Promoter > UTR CCTCCCAGECCTGCCCAG

Acceptor site

——————

Intron(Removed)

Poly-A site

........ /

Stop codon GGCAGAAACAATAAA'TS(e.Te
GATCCCCATGCCTGAGGGCCCCTC 7'




ADb initio”?

* Gene prediction is usually broken into three
types:

— Ab initio : making predictions based on some
statistical model (GENSCAN, FGENE)

— Knowledge-based: making predictions based on
known genes (tBLASTX)

— Comparative: making predictions based on a
related genome (TwinScan)



Multi-Species Comparative Analysis
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Figure 4: Multi-Species Comparative Analysis. (This picture is from Sanja Rogic‘s
lecture slides, “Computational Gene Finding”)



0.4 06

Exon 0.6 »| Intron
04 ——

P(A)=0.2 P(A)=0.25
P(C)=0.3 P(C)=0.25
P(G)=0.3 P(G)=0.25

P(T)=0.2 P(T)=0.25



Observed sequence, hidden path and Viterbi path

Rolls 315116246446644245311321631164152133625144543631656626566666
Die FFFFFPFFPFFFFPFPFFFFFRFEFFFFFFFFFFFFFRFFFFFFFFFFLLLLLLLLLLLLLLL
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFRFFFFFFFFFFFFFLLLLLLLLLLLL

Rolls 651166453132651245636664631636663162326455236266666625151631
Die LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLEFFFFFFFF
Viterbi LLLLLLFPFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLFFPFFFFF

Rolls 222555441666566563564324364131513465146353411126414626253356
Die FFFFF¥FFLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFRFFFFFFFFFELL
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFPFFFFFFFFFFFRFFFEFFFFL

Rolls 366163666466232534413661661163252562462255265252266435353336
Die LLLLLLLLFFFFFPFFFFFFFFFFFFFFFFFFFFPFFFFPRFFPRFPFFFFA PP PFPFFFF
Viterbi LLLLLLLLLLLLFFFFFFFFFFFFFEFFFFFFPFFFFPFFFRPPFFFFFFFPRERFPFPFEEF

Rolls 233121625364414432335163243633665562466662632666612355245242
Die FFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLFFFFFFPRFEF
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLFPFFRFEFFFFF

Figure 3.5 The numbers show 300 rolls of a die as described in the exam-
ple. Below is shown which die was actually used for that roll (F for fair and
L for loaded). Under that the prediction by the Viterbi algorithm is shown.

From Durbin



The occasionally dishonest casino: Posterior decoding
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Figure 3.6 The posterior probability of being in the state corresponding to
the fair die in the casino example. The x axis shows the number of the roll.
The shaded areas show when the roll was generated by the loaded die.
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Krogh, Mian and Haussler (1994)
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3,673 Chromosome 22 splice donor sites

A
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3,673 Chromosome 22 splice acceptor sites

http://www.sanger.ac.uk/HGP/Chr22/cwa_archive/splice _site analysis.shtml



Open reading frames

* Generally defined as regions in genes
between a start (ATG) and stop (eg. TGA)
codon.

» Size is a multiple of 3

» Six possibilties given any DNA sequence

— 0 offset, + strand; 1 offset, + strand, 2 offset, +
strand

— 0 offset, - strand; 1 offset, - strand, 2 offset, -
strand



Examples from the text

* M. genitalium (example 2.6)
— 402 bp is a significant value

* H. influenzae (2.7)
— 573 bp is significant

— Larger genome than M. genitalium, so this makes
sense.



Not all codons are equal

CODON USAGE IN E. COLI GENES!

Codon | Amino %3 Ratio? | Codon | Amino % Ratio | Codon | Amino w® Ratio Codon | Amino w Ratio
anid? acid a id acid
UUU | Phe (F) | 19 051 |UCU | Sex® | 1.1 | 019 |UAU| Tvi(9) | 16 | 0553 |UGU [Cys(C)| 04 | 043
UUC |Phe ) | 18 [ 049 |Ucc | Seag | 10 | 017 |UAC| Tim | 14 | 047 |UGC | Cysiq) | 06 | 057
UUA
UuG

Len@ | 10 | 011 |UcA | sa@ | 07 |012 |Uaa| sror | 02 | 062 |UGA | sror |01 |030
Lengr) | 1.1 | 011 |UcG | Seam | 08 | 013 |UAG | sror | 003 [009 |UGG | Trpewn| 14 | 100

Clcuu|Leuw [ 10 | 010 |ccu| Pro@ | 07 016 |cau| Hism | 12 |05 |cou | agm |24 |04z
CUC | Leuq) | 09 | 010 |ccc | Pro@ | 04 010 |CAC | Hisgm | 11 | 048 |CGC | Aigm®y | 22 | 037
CUA | Leum [ 03 | 003 |CCA| Pro®) | 08 | 020 |CAA | GIng) | 13 | 031 |CGA | Aigm®) | 03 | 005
CUG | Leugy | 52 | 055 |ccG | Pro@ | 24 | 055 |cAG | Gny | 29 | 069 |CGG | Argmy | 05 | 008

Alaw| nem |27 | 047 |Acu| Tem | 12 (021 | AAU| Asugy | 16 [ 039 |AGU | saqg |07 [013
AuC | 1em |27 | 046 |Acc [ Tmm | 24 043 |AAc | Asupgy | 26 | 061 |AGC | sa® | 15 |027
AUA| Ilem |04 | 007 |ACA|[Tmxm | 01 (030 |ASA|Lys®) | 38 | 076 | AGA | Arig®) | 02 | D04
AUG | Metpm| 26 | 100 |ACG | Tem | 13 [ 023 |AAG [Lys®) | 12 | 024 |AGG | Arg®y | 02 | 003

aradaradaradarad

Gleuu| vaiwm [ 20 | 029 |ceu| anw | 18 [019 |cau| aspm | 35 | 059 |ceu| clye | 28 |03
GUC | Val(w) | 14 | 020 |GCC | Alga) | 23 | 025 |GAC | Aspm) | 23 | 041 |GGC | GlyG) | 30 | 040
GUA | Vvalm | 12 [ 017 |GCA| Am@ | 21 |02 |GAA| Glug | 44 | 070 |GGA | Gly) |07 |D0D9
GUG Val[?J 24 | 034 |Gee Ah[g 32 | 034 |cGAG Glu(z 19 | 030 |GGG Gly(?;) 09 |0.13

1 The data shown in this table is from the Arabidopsis Research Companion on the Woild Wide Web (//we eds/mgh harvard edu). Codon
frequencies for many other bacteria can be found at http://morgan.angis su.oz.awAngis/Tables.html.

& The letter in parenthesis represents the one-letter code for the amino acid.

3 9, represents the average frequency this codon is used per 100 codons.

4 Ratio represents the abundance of that codon relative to all of the coclons for that particular amino acid.

REFERENCE: Modified from Maloy, S., V. Stewart, and R. Taylor. 1996.
Genetic analysis of pathogenic bacteria. Cold Spring Harbor Laboratory Press, NY.



Simple example

Lets only consider two states: coding and
non-coding (+ or -)

Further, we will consider only four output
states
— ACGT

At most we will have 8 states:
— +A, +C, +G, +T,-A, -C, -G, -T



Long ORFs

« At random, we’ d expect a stop codon
every 64 nucleotides.

 Many bacteria genes are much longer
than this.

* These can be used to train a statistical
model.



Significance

« An important question often is “Are
these interesting?”

» Many bioinformatics tools compute a p-
value, or the probability of observing
something in a random collection.

— Example: e-value in BLAST



Randomization test

* There are two ways to determine significant
ORF lengths:

 Permutation

— Shuffle the original sequence in a simple or more
complicated way

» Bootstrapping

— Generate random sequences with the same
statistical properties

— Uses Markov chain models as in Hw #1



But walt!

* Finding ORFs alone isn’t sufficient. E.
coli has up to 6500 ORFs but only 1100

“real” genes

» Complicated by the fact ORFs can
overlap on different strands and be
correct (figure in class)



Homework to the rescue (or at
least part of the way there)

* We know codons are triplets.

« We also know from last class codons
are not equal.

» A simple gene finder is no different from
your Markov assignment except now
we'll need to compute two probabilities



Simple gene finding

» Score every ORF using all seven
models

 Normalize the scores such that they
represent the probability of coding

* Choose the highest



Durbin: First order Markov
(p74)




Take home

* Interestingly, there is some signal in the
previous figure:
— Average log-odds for genes: 0.018
— Average log-ods for non-genes: 0.009

* The variance is huge, though, so itis
hard to tell which is which in general.



Selecting the proper Markov
order

* Higher order models remember more
“history,” which helps predictions

« Examples (from Colin Dewey):
—"...you
—“...canyou "
—"...say canyou__~
—"...ohsaycanyou _ "~



Durbin p. 76

One fix is to use a third order model



