
Whole genome alignment

Applications of genome
alignment

• Comparing different genome assemblies
• Locating genome duplications and

conserved segments
• Gene finding through comparative

genomics
• Analyzing pathogenic bacteria against

their harmless close relatives

Homology map

Species 1

Species 2

We multiply align these blocks together

Overview/Goals
• Input:

– Set of whole genomes, which may differ by
substitutions, indels and rearrangements

– Uses open reading frames or other gene
predictions

• Output:
– One alignment per region of genomes that

has not been �shuffled�
• Two genomes = global
• > 2 genomes = multiple

2/8/18 2

http://fig.cox.miami.edu/Faculty/Dana/synteny.jpg

Two different most parsimonious scenarios that transform the order of the 11 synteny blocks
on the mouse X chromosome into the order on the human X chromosome

Pevzner P., Tesler G. PNAS 2003;100:7672-7677

Copyright © 2003, The National Academy of Sciences

2/8/18 4

Whole-genome alignment

• Advanced data structures can also be
used to efficiently speed up genomic
alignments of closely-related organisms.

• We will introduce suffix trees and the
MUMmer algorithm before going into detail
next week.

Suffix trees

• Specialized form of keyword trees/tries
• Key idea:

– preprocess text T, not pattern P
• O(m) preprocess time
• O(n+k) search time

– k is number of occurrences of P in T

Keyword Tree

• P = {poet, pope, popo, too}

p

o

e

t

1

p

e

2

o

3

t

o

o

4

Suffix Tree
• Take any m character string S like xabxac
• Set of keywords is the set of suffixes of S

– {xabxac, abxac, bxac, xac, ac, c}

• Changes relative to keyword trees:
– Assumption: no suffix is a prefix of another suffix (can

be a substring, but not a prefix)
• Assure this by adding a character $ to end of S

– Internal nodes except root must have at least 2
children

Example suffix tree

• {xabxac, abxac, bxac, xac, ac, c}

1

b
b

b
x

x

x
x

a

a
a

aa
c

c

c

c

cc

2
3

6

5

4

Notation to keep track of
• Label of a path from root r to a node v is

simply the concatenation of labels on
edges from r to v

• label of a node v is L(v)
– path label from r to v

• string-depth of v
– number of characters in v�s label L(v)

Using suffix trees in exact
matching

• Build suffix tree for text T
• Match pattern P against tree starting at

root until
– Case 1, P is completely matched

• Every leaf below this match point is the starting
location of P in T

– Case 2: No match is possible
• P does not occur in T

Illustration
• T = xabxac

– suffixes ={xabxac, abxac, bxac, xac, ac, c}
• Pattern P1: xa
• Pattern P2: xb

1

b
b

b
x

x

x
x

a

a
a

aa
c

c

c

c

cc

2
3

6

5

4

In-class example

• S = xabxabdeabhixab$
• xabxacdefghixab$
• abxacdefghixab$
• bxacdefghixab$
• xacdefghixab$
• …
• $

Building trees: O(m2) algorithm

• Initialize
– One edge for the entire string S[1..m]$

• For i = 2 to m
– Add suffix S[i..m] to suffix tree

• Find match point for string S[i..m] in current tree

• If in �middle� of edge, create new node w
• Add remainder of S[i..m] as edge label to suffix i leaf

• Running Time
– O(m-i) time to add suffix S[i..m]

Running Time Analysis
• Build suffix tree:

– Will show this is O(m)
– This is preprocessing

• Search time:
– O(n+k) where k is the number of occurrences

of P in T
– O(n) to find match point if it exists
– O(k) to find all leaves below match point

2/8/18 15

Why suffix trees are important in
genome alignment

• Long unique matches have a high
probability of being included in the final
genomic alignment.

• We need to set the minimum length high-
enough, however, to avoid random noise.
– MUMs = maximal unique matches
– MEMs = maximal exact matches

2/8/18 16

Overview

Genome A

Genome A

X X X

Genome A�

1 4 3 25

We have 5 matches that can not be extended to left or right

We have 4 gaps to fill between these matches

2/8/18 17

MUM-based alignments

• MUMs are by definition unique maximal
matches in both sequences
– Originally required building a generalized

suffix tree of both genomes
– Internal nodes w/ only two leaves, one from

each input, are unique and not right-
extensible

– Check for left-extensibility, then go!

2/8/18 18

Maximal Unique Matches

$

O

ND

W

I$OG
D

$O
G

I

O
W

$

$O
G

N
D

$O
G

I O
W

$

$O
G

I O
W

$ $W

$

IN
D

O
W

$

$

(2, 3) (1, 4)

(2, 5)

(2, 4)

(2, 1) (1, 2)

(2, 2) (1, 3) (1, 5) (2, 6)

(1, 6) (1, 1)

(1, 7)
(2, 7)

WINDOW$ INDIGO$
1234567 1234567

Left-extensible
By �I�

2/8/18 19

Early whole genome
alignment algorithms

• Arranged MUMs relative to one genome
using Longest Increasing Subsequence
(LIS) algorithm

• Filled in small gaps using dynamic
programming
– Space inefficient for large gaps

2/8/18 20

Banded Dynamic Programming

c

F1

F2

b

a

d

– Compute only lower and upper rectangles based on
desired percent similarity

MUM

2/8/18 21

Suffix links are in green

From Delcher et al., 2002, Nucleic Acids Res30(11):2478-83

2/8/18 22

Applications

• Comparing different genome assemblies
• Locating genome duplications and

conserved segments
• Gene finding through comparative

genomics
• Analyzing pathogenic bacteria against

their harmless close relatives

From: Miller et al. Annu. Rev. Genom. Human. Genet. 2004.5:15-56.

BLASTZ

• Modification of BLAST for whole-genome
alignment of close species (i.e. human-mouse)

• Optimized for intron-exon discovery.

• Two differences with gapped BLAST:
– Matching regions can be restricted to occur in same

order and orientation.
– Uses a special scoring matrix that limits false positive

alignments in low complexity regions.

Optimization
• Two changes to BLASTZ significantly improved its

execution speed.

• If the software realizes that many regions of the mouse
genome align to the same human segment,that segment
is marked so that it will be ignored in later steps

• Second,the idea of Ma et al. (2002) where for runs of 19
consecutive within which the 12 positions indicated by a
1 in the string 1110100110010101111 are identical.

Results

• Data:
– human genome into ~3000 segments (1 MB each)

– Divided mouse genome into 100 30MB segments

• Run time:
– 481 CPU days

– 0.5 days on a 1,024 processor cluster

– 20 GB of output

2/8/18 30

MUMmer 2.0
• Improved space implementation of suffix

tree using a few tricks (17 bytes/base)

• Introduced banded dynamic programming
and advanced clustering to tackle larger
gaps

• Used suffix tree �streaming� of multiple
queries against a reference

2/8/18 31

MUMmer 2

• Three times faster
• One-third memory usage
• Support protein sequence and multiple

sequences.
• Entire human chromosomes

• Can align millions of nucleotides in a few
minutes on a desktop computer.

Linear time of suffix arrays
• There were three papers in 2002 that solved the old

problem of constructing suffix arrays in linear time.

• These were:
– Ko and Aluru – very interesting, but hard to

understand
– Kim et al. – was based on older parallel suffix tree

algorithms
– Karakkanen and Sanders is the simplest and most

elegant.

2/20/18 10

2/20/18 11

