Review of whole genome methods

- Suffix-tree based
 - MUMmer, Mauve, multi-Mauve
- § Gene based
 - <u>Mercator</u>, multiple orthology approaches
- Dot plot/clustering based – MUMmer 2.0, Pipmaker, <u>LASTZ</u>

Background for yeast study

- Brewing evolved in middle ages Europe to produce ale-type beer via *Saccharomyces cerevisiae*, the same yeast used in wine and leavened bread.
- Lager-brewing arose in 15th century Bavaria, and is the most popular technique
- Lager, however, requires slow, low temperature fermentation by cryotolerant yeast(s).

Saccharomyces pastorianus

- Used to make lager, but never has been found in wild and depends on humans
- Allotetraploid hybrid of *S. cerevisiae* and an unknown yeast species.
- Understanding this unique contribution is important for understanding domestication of this yeast for human use

	Strain	Culture collection allases*			Fastlant collection		
		CBS	DBVPG ^b	NCYC	entry date	Other information	Collection locale
5. postorianus strains							
Group 1	GSY509	2440		398	June 1952		Brewery-Saaz type beer; bottom yeast
	GSY133	1486	6258	397	June 1935		Brewery-Saaz type beer
	GSY501	1174			June 1931		Brewery-Saaz type beer
	GSY131	1538	60471	392	October 1935 (described by Hansen in 1904)	 pastorianus- type strain 	Carlsberg Brewery
	GSY137		6284			AJL248	Alfred Jorgensen's Laboratorium (now Danbrew)
	GSY129	1513	60331	396	October 1947 (original culture 1883, Hansen)	 carlsbergensis- type strain 	Carlsberg Brewery; bottom yeast no. I
	GSY134	1503	6261		(original culture 1908, Hansen)	 monacensis- type strain 	Carlsberg Brewery ; bottom yeast no. II
Group 2	GSY132	1260	6257	400	March 1937	97	Frohberg-type bottom veast. Netherlands
	GSY138		6285 ²			M 1563	Copenhagen
	GSY139		65602			C83 1562	Denmark
	GSY135		6282 ²		1962	BK 2233	Labatt Brewery, Canada; bottom-fermenting
	GSY136		6283 ²		1969	BK 2230	Rainier Brewery, WA; bottom-fermenting
	GSY516	6903			September 1976		Brewery, Netherlands
	GSY515	5832			December 1967		Brewery, Netherlands
	GSY503	1483			July 1927		Brewery-Heineken, Netherlands; bottom yeast
	GSY504	1484			February 1925		Cloudy beer—Oranjeboom, Netherlands: bottom veast
5. cerevisioe strains Ale strains	GSY508	2156		457	June 1955		Brewery, Netherlands
	GSY161					Wyeast1388	Belgian Strong Ale; probable origin Duvel
	G5Y708					Wyeast1056	American Ale Yeast; probable origin Sierra Nevada and/or Ballantine breweries
	GSY934					Leinenkugel Ale	Miller brewery collection, Leinenkugel ale, WI

Table 1. Strains used in this study, and their culture collection aliases

Results

- Saccharomyes are associated with oak trees in Northern hemisphere.
- This study focused on Patagonia in South America with 123 cryotolerant species and two isolates of *S. cerevisiae*. The fact so many were cryotolerant is unique relative to the northern hemisphere.
- These group with biological assays with the two known contaminants of lager/cider/wine fermentation

Lager paper

- Three cool facts when you get a chance to read
 - Yeast used for lager beer probably arose in ale breweries
 - Two distinct types of lager yeast, referred to as groups 1 and 2
 - Both groups probably arose independently in Europe

Domestication and analysis

- Lager yeast is a mix of at least three yeast species
- Interestingly, all cryotolerant species have the same chunk of S. cervisiae useful for processing maltose
 - Maltose is one of the most abundant sugars in wort used in brewing
- Relationships are contentious as the lager yeast and related yeasts previously were only found in human fermentation efforts- resolved via seq

Suffix arrays

- Suffix arrays require even less space than a suffix tree
- Very simply, it is a sorted list of suffixes
 - Example in the Aluru chapter posted as a resource

Linear time of suffix arrays

- There were three papers in 2002 that solved the old problem of constructing suffix arrays in linear time.
- These were:
 - Ko and Aluru very interesting, but hard to understand
 - Kim et al. was based on older parallel suffix tree algorithms
 - Karakkanen and Sanders is the simplest and most elegant.

FIGURE 1.1: Suffix tree, suffix array and *Lcp* array of the string *mississippi*. The suffix links in the tree are given by $x \to z \to y \to u \to r$, $v \to r$, and $w \to r$.

Try it out (other way)

- Construct the suffix array of the string "BANANA\$"
- Construct the LCP array for the suffix array above
- Given the suffix array and LCP array, can you draw a suffix tree?

Algorithm

- Recursively sort the 2/3n suffixes with i mod 3 != 0
- Sort the 1/3n suffixes with i mod 3 == 0 using the previous result.
- Merge the two sorted arrays.

Some thoughts

- The sorting can be done using Radix sort and the relative ranks of suffixes used for the ordering.
- The 1/3 and 2/3 split makes the merging much easier; other ½½ 2 approaches (e.g. Kim et al.) use this with clever tricks.
- Similar to the odd and even suffix technique of Farach.

Sequence Assembly

Greedy solution is bounded

$$G_o = (V, E, o)$$

SUPERSTRING is MAX SNP-hard, so one of the best approximation algorithms possible.

Typical assembly strategy

"Traditional" Assemblers

- FIGR Assembler
- Section CAP3/PCAP
- PHRAP
- Selera Assembler

- **ARACHNE**
- § JAZZ
- **PHUSION**
- § ATLAS

Advantages

- Effective heuristics to solve this NPC problem
- Service Force parallelization is easy to implement

Limitations

- Limited scaling as a result of using disk

A Look at the maize genome

Problems due to repeats

Types of sequencing gaps

sequencing gap - we know the order and orientation of the contigs and have at least one clone spanning the gap

physical gap - no information known about the adjacent contigs, nor about the DNA spanning the gap

Slide from Mihai Pop and Michael Schatz

Modern assembler: de Bruijn graphs

- G = (V, E) where V is the set of all length k subfragments and E are directed edges if nodes overlap by k-1 characters.
- Relevant papers:
 - De Bruijn, 1946; Idury and Waterman, 1995; Pevzner, Tang, Waterman, 2001
- § Good news: the correct assembly exists as a path through G
- § Bad news: there are many such paths!

Try it out!

- Sonsider the text:
 - It was the best of times it was the worst of times it was the age of wisdom it was the age of foolishness
- Nodes in the graph are overlapping phrases of length 4, aka "It was the best" and "was the best of"
- Draw an edge between nodes if the last three words of one node match the first three of another.

Try it out! (part 2)

- Sonsider the text:
 - It was the best of times it was the worst of times it was the age of wisdom it was the age of foolishness
- How could you construct an "assembly" based on this graph? Are there multiple answers?
- Solution How many possible answers are correct

Compressed de Bruijn

- Son-branching paths replaced by single nodes
- A Eulerian/Chinese postman traversal can reconstruct the text
- More importantly, different sequences may have the same string graph constructed as previously discussed.

Implementations

- Solution There are multiple assemblers:
 - ALLPATHS
 - Abyss
 - Velvet
 - SOAP-denovo
 - SPADEs
- Michael Schatz has a map-reduce formulation, we are interested in grid-based tools.

EULER - A New Approach to Fragment Assembly

- Fraditional "overlap-layout-consensus" technique has a high rate of mis-assembly
- EULER uses the Eulerian Path approach borrowed from "sequencing by hybridization" (SBH)
- Fragment assembly without repeat masking can be done in linear time with greater accuracy

Sequencing by Hybridization (SBH): History

- 1988: SBH suggested as an an alternative sequencing method. Nobody believed it will ever work
- 1991: Light directed polymer synthesis developed by Steve Fodor and colleagues.
- 1994: Affymetrix develops first 64-kb DNA microarray

First microarray prototype (1989)

First commercial DNA microarray prototype w/16,000 features **(1994)**

500,000 features per chip **(2002)**

- Attach all possible DNA probes of length / to a flat surface, each probe at a distinct and known location. This set of probes is called the DNA array.
- Solution Containing Fluorescently labeled DNA fragment to the array.
- The DNA fragment hybridizes with those probes that are complementary to substrings of length / of the fragment.

How SBH Works (cont'd)

- Using a spectroscopic detector, determine which probes hybridize to the DNA fragment to obtain the *I*-mer composition of the target DNA fragment.
- Solution Apply the combinatorial algorithm (previous) to reconstruct the sequence of the target DNA fragment from the *I* mer composition.

Some Difficulties with SBH

- Fidelity of Hybridization: difficult to detect differences between probes hybridized with perfect matches and 1 or 2 mismatches
- Array Size: Effect of low fidelity can be decreased with longer *I*-mers, but array size increases exponentially in *I*. Array size is limited with current technology.
- Practicality: SBH is still impractical. As DNA microarray technology improves, SBH may become practical in the future

Eulerian Cycle Problem

- Find a cycle that visits every edge exactly once
- ٤ Linear time

More complicated Königsberg

A graph is balanced if for every vertex the number of incoming edges equals to the number of outgoing edges:

in(v)=out(v)

Theorem: A connected graph is Eulerian if and only if each of its vertices is balanced.

Approaches to Fragment Assembly (cont'd)

Find a path visiting every EDGE exactly once in the REPEAT graph:

Eulerian path problem

Linear time algorithms are known

Hamiltonian Cycle Problem

- Find a cycle that visits every vertex exactly once
- NP complete

SBH: Hamiltonian Path Approach

S = { ATG AGG TGC TCC GTC GGT GCA CAG }

Path visited every VERTEX once

SBH: Hamiltonian Path Approach

S = { ATG TGG TGC GTG GGC GCA GCG CGT }

Hybridization on DNA Array

DNA target TATCCGTTT (complement of ATAGGCAAA)

hybridizes to the array of all 4-mers:

```
ATAGGCAAA
ATAG
TAGG
AGGC
GGCA
GCAA
CAAA
```

I-mer composition

- Def: Given string s, the Spectrum (s, I) is unordered multiset of all possible (n − l + 1) l-mers in a string s of length n
- The order of individual elements in Spectrum (s, l) does not matter
- For s = TATGGTGC all of the following are equivalent representations of

Spectrum (s, 3):

{TAT, ATG, TGG, GGT, GTG, TGC} {ATG, GGT, GTG, TAT, TGC, TGG} {TGG, TGC, TAT, GTG, GGT, ATG}

The SBH Problem

- Solution
 Solution</p
- Input: A multiset S, representing all *l*-mers from an (unknown) string s
- Such that Spectrum (s,I) = S

Different sequences – the same spectrum!

Solution Sequences may have the same spectrum:

Spectrum(GTATCT,2)= Spectrum(GTCTAT,2)= {AT, CT, GT, TA, TC}

SBH: Eulerian Path Approach

S = { ATG, TGC, GTG, GGC, GCA, GCG, CGT }

Vertices correspond to (I - 1) – mers : { AT, TG, GC, GG, GT, CA, CG } Edges correspond to I – mers from S

