Multiple Sequence Alignment

Multiple Alignment versus Pairwise Alignment

- Up until now we have only tried to align two sequences.
- What about more than two? And what for?
- A faint similarity between two sequences becomes significant
 if present in many
- Multiple alignments can reveal subtle similarities that pairwise alignments do not reveal

Generalizing the Notion of Pairwise Alignment

- Alignment of 2 sequences is represented as a 2-row matrix
- In a similar way, we represent alignment of 3 sequences as a 3-row matrix

- Score: more conserved columns, better alignment

Alignments $=$ Paths in..

Align 3 sequences: ATGC, AATC,ATGC

| |
| :--- | A

Alignment Paths

0	1	1	2	3	4
	A	--	T	G	C
	\begin{tabular}{\|c	c	c	c	c
\hline					
\end{tabular}					
	A	A	T	--	C
	--	A	T	G	C

x coordinate

Alignment Paths

Align the following 3 sequences:
ATGC, AATC,ATGC

0	1	1	2	3	4
	A	--	T	G	C
0	1	2	3	3	4
	A	A	T	--	C

	--	A	T	G	C

Alignment Paths

0	1	1	2	3	4	x coordinate
	A	--	T	G	C	
0	1	2	3	3	4	y coordinate
	A	A	T	--	C	
0	0	1	2	3	4	z coordinate
	--	A	T	G	C	

Resulting path in (x, y, z) space:
$(0,0,0) \rightarrow(1,1,0) \rightarrow(1,2,1) \rightarrow(2,3,2) \rightarrow(3,3,3) \rightarrow(4,4,4)$

Aligning Three Sequences

- Same strategy as aligning two sequences
- Use a 3-D "Manhattan Cube", with each axis representing a sequence to align
- For global alignments, go from source to sink

2-D vs 3-D Alignment Grid

2-D edit graph

3-D edit graph

2-D cell versus 2-D Alignment Cell

In 2-D, 3 edges in each unit square

In 3-D, 7 edges in each unit cube

Architecture of 3-D Alignment Cell

Multiple Alignment: Dynamic Programming

$$
\begin{aligned}
& s_{i, j, k}=\max \left\{\begin{array}{l}
\left.s_{i-1, j-1, k-1}+\delta\left(v_{i}, w_{j}, u_{k}\right)\right) \text { cube diagonal: } \\
s_{i-1, j-1, k}+\delta\left(v_{i}, w_{j},-\right) \\
s_{i-1, j, k-1}+\delta\left(v_{i},-, u_{k}\right) \\
\left.s_{i, j, l-l}\right)
\end{array}\right. \text { face indels } \\
& s_{i, j-1, k-1}+\delta\left(-, w_{j}, u_{k}\right) \text { one indel } \\
& s_{i-1, j, k}+\delta\left(v_{i},{ }_{-},{ }_{-}\right) \\
& s_{i, j-1, k}+\delta\left(_, w_{j}, _^{\prime}\right) \text { edge diagonal: } \\
& s_{i, j, k-1}+\delta\left({ }_{-}, u_{k}\right) \text { two indels }
\end{aligned}
$$

$\delta(x, y, z)$ is an entry in the 3-D scoring matrix

Multiple Alignment: Running Time

- For 3 sequences of length \boldsymbol{n}, the run time is $7 \boldsymbol{n}^{3} ; \mathrm{O}\left(\boldsymbol{n}^{3}\right)$
- For \boldsymbol{k} sequences, build a \boldsymbol{k}-dimensional Manhattan, with run time ($\left.2^{k}-1\right)\left(n^{k}\right)$; O ($2^{k} n^{k}$)
- Conclusion: dynamic programming approach for alignment between two sequences is easily extended to \boldsymbol{k} sequences but it is impractical due to exponential running time

Multiple Alignment Induces Pairwise Alignments

Every multiple alignment induces pairwise alignments

$$
\begin{array}{ll}
\mathrm{x}: & \text { AC-GCGG-C } \\
\mathrm{y}: & \text { AC-GC-GAG } \\
\mathrm{z}: & \text { GCCGC-GAG }
\end{array}
$$

Induces:

$$
\begin{aligned}
& \mathrm{x}: \text { ACGCGG-C; } \mathrm{x}: \text { AC-GCGG-C; } \mathrm{y}: \text { AC-GCGAG } \\
& \mathrm{y}: \text { ACGC-GAG; } \mathrm{z}: \text { GCCGC-GAG; } \mathrm{z}: \text { GCCGCGAG }
\end{aligned}
$$

Reverse Problem: Constructing Multiple Alignment from Pairwise Alignments

Given 3 arbitrary pairwise alignments:

```
x: ACGCTGG-C; x: AC-GCTGG-C; y: AC-GC-GAG
y: ACGC--GAG; z: GCCGCA-GAG; z: GCCGCAGAG
```

can we construct a multiple alignment that induces them?

Reverse Problem: Constructing Multiple Alignment from Pairwise Alignments

Given 3 arbitrary pairwise alignments:

```
x: ACGCTGG-C; x: AC-GCTGG-C; y: AC-GC-GAG
y: ACGC--GAG; z: GCCGCA-GAG; z: GCCGCAGAG
```

can we construct a multiple alignment that induces them?
NOT ALWAYS

Pairwise alignments may be inconsistent

Combining Optimal Pairwise Alignments into Multiple Alignment

Can combine pairwise alignments into multiple alignment

[^0]

Multiple Alignment: Greedy Approach

- Choose most similar pair of strings and combine into a profile , thereby reducing alignment of k sequences to an alignment of of $k-1$ sequences/profiles. Repeat
- This is a heuristic greedy method

$$
k\left\{\begin{array}{ll}
\mathrm{u}_{1}=\text { ACGTACGTACGT } \ldots \longrightarrow \\
\mathrm{u}_{2}=\text { TTAATTAATTAA } \ldots & \mathrm{u}_{1}=\text { ACg/tTACg/tTACg/cT } \ldots \\
\mathrm{u}_{3}=\text { ACTACTACTACT } \ldots & \ldots \\
\ldots & \mathrm{u}_{2}=\text { TTAATTAATTAA } \ldots \\
\mathrm{u}_{\mathrm{k}}=\text { CCGGCCGGCCGG } & \\
\mathrm{u}_{\mathrm{k}}=\text { CCGGCCGGCCGG } \ldots
\end{array}\right\} k-1
$$

Greedy Approach: Example

- Consider these 4 sequences

$$
\begin{array}{ll}
s 1 & \text { GATTCA } \\
\text { s2 } & \text { GTCTGA } \\
\text { s3 } & \text { GATATT } \\
\text { s4 } & \text { GTCAGC }
\end{array}
$$

Greedy Approach: Example (cont'd)

- There are $\binom{4}{2}=6$ possible alignments

s2	GTCTGA	s1	GATTCA--
s4	GTCAGC (score = 2)	s4	$\mathrm{G}-\mathrm{T}-\mathrm{CAGC}($ score $=0)$
s1	GAT-TCA	s2	G-TCTGA
s2	G-TCTGA (score = 1)	s3	GATAT-T (score = -1)
s1	GAT-TCA	s3	GAT-ATT
s3	GATAT-T (score = 1)	s4	G-TCAGC (score = -1)

Greedy Approach: Example (cont'd)

s_{2} and s_{4} are closest; combine:
$\begin{array}{ll}s 2 & \text { GTCTGA } \\ \text { s4 GTCAGC }\end{array} s_{2,4}$ GTCt/aGa/C (profile)
new set of 3 sequences:

$$
\begin{array}{ll}
s_{1} & \text { GATTCA } \\
s_{3} & \text { GATATT } \\
s_{2,4} & \text { GTCt/aGa/c }
\end{array}
$$

Progressive Alignment

- Progressive alignment is a variation of greedy algorithm with a somewhat more intelligent strategy for choosing the order of alignments.
- Progressive alignment works well for close sequences, but deteriorates for distant sequences
- Gaps in consensus string are permanent
- Use profiles to compare sequences

ClustaIW

- Popular multiple alignment tool today
- 'W' stands for 'weighted' (different parts of alignment are weighted differently).
- Three-step process
1.) Construct pairwise alignments
2.) Build Guide Tree
3.) Progressive Alignment guided by the tree

Step 1: Pairwise Alignment

- Aligns each sequence again each other giving a similarity matrix
- Similarity = exact matches / sequence length (percent identity)

(. 17 means 17% identical)

Step 2: Guide Tree

- Create Guide Tree using the similarity matrix

ClustalW uses the neighbor-joining method

Guide tree roughly reflects evolutionary relations

Step 2: Guide Tree (cont'd)

Calculate:

$$
\begin{array}{ll}
v_{1,3} & =\text { alignment }\left(v_{1}, v_{3}\right) \\
v_{1,3,4} & =\text { alignment }\left(\left(v_{1,3}\right), v_{4}\right) \\
v_{1,2,3,4} & =\operatorname{alignment}\left(\left(v_{1,3,4}\right), v_{2}\right)
\end{array}
$$

Step 3: Progressive Alignment

- Start by aligning the two most similar sequences
- Following the guide tree, add in the next sequences, aligning to the existing alignment
- Insert gaps as necessary

FOS_RAT
FOS_MOUSE
FOS_CHICK
FOSB_MOUSE
FOSB_HUMAN

PEEMSVTS-LDLTGGLPEATTPESEEAFTLPLLNDPEPK-PSLEPVKNISNMELKAEPFD
PEEMSVAS-LDLTGGLPEASTPESEEAFTLPLLNDPEPK-PSLEPVKSISNVELKAEPFD SEELAAATALDLG----APSPAAAEEAFALPLMTEAPPAVPPKEPSG--SGLELKAEPFD PGPGPLAEVRDLPG-----STSAKEDGFGWLLPPPPPPP--------------------LPFQ
PGPGPLAEVRDLPG-----SAPAKEDGFSWLLPPPPPPP--------------------LPFQ

Dots and stars show how well-conserved a column is.

Multiple Alignments: Scoring

- Number of matches (multiple longest common subsequence score)
- Entropy score
- Sum of pairs (SP-Score)

Multiple LCS Score

- A column is a "match" if all the letters in the column are the same

$$
\begin{aligned}
& \text { AAA } \\
& \text { AAA } \\
& \text { AAT } \\
& \text { ATC }
\end{aligned}
$$

- Only good for very similar sequences

Entropy

- Define frequencies for the occurrence of each letter in each column of multiple alignment

$$
\begin{aligned}
& -p_{A}=1, p_{T}=p_{G}=p_{C}=0(1 \text { st column }) \\
& -p_{A}=0.75, p_{T}=0.25, p_{G}=p_{C}=0\left(2^{\text {nd }} \text { column }\right) \\
& -p_{A}=0.50, p_{T}=0.25, p_{C}=0.25 p_{G}=0\left(3^{\text {rd }} \text { column }\right)
\end{aligned}
$$

- Compute entropy of each column

> AAA
> AAA
> AAT
> ATC

Entropy: Example

entropy $\left(\begin{array}{l}A \\ A \\ A \\ A\end{array}\right)=0 \quad$ Best case

Worst case entropy $\left(\begin{array}{l}A \\ T \\ G \\ C\end{array}\right)=-\sum \frac{1}{4} \log \frac{1}{4}=-4\left(\frac{1}{4} *-2\right)=2$

Multiple Alignment: Entropy Score

Entropy for a multiple alignment is the sum of entropies of its columns:
$\Sigma_{\text {over all columns }} \Sigma_{X=A, T, G, C} p_{X} \log p_{X}$

Entropy of an Alignment: Example

column entropy:

$-\left(p_{A} \log p_{A}+p_{C} \log p_{C}+p_{C} \log p_{G}+p_{T} \log p_{T}\right)$

A	A	A
A	C	C
A	C	G
A	C	T

-Column $\begin{aligned} & 1=-[1 * \log (1)+0 * \log 0+0 * \log 0+0 * \log 0] \\ &=0\end{aligned}$

- Column $2=-[(1 / 4) * \log (1 / 4)+(3 / 4) * \log (3 / 4)+0 * \log 0+0 * \log 0]$

$$
=-[(1 / 4) *(-2)+(3 / 4) *(-.415)]=+0.811
$$

-Column $3=-[(1 / 4) * \log (1 / 4)+(1 / 4) * \log (1 / 4)+(1 / 4) * \log (1 / 4)+(1 / 4)$
$* \log (1 / 4)] \quad=4^{*}-[(1 / 4) *(-2)]=+2.0$

- Alignment Entropy $=0+0.811+2.0=+2.811$

Inferring Pairwise Alignments from Multiple Alignments

- From a multiple alignment, we can infer pairwise alignments between all sequences, but they are not necessarily optimal
- This is like projecting a 3-D multiple alignment path on to a 2-D face of the cube

Multiple Alignment Projections

A 3-D alignment can be projected onto the 2-D plane to represent an alignment between a pair of sequences.

All 3 Pairwise Projections of the Multiple Alignment

Sum of Pairs Score(SP-Score)

- Consider pairwise alignment of sequences

$$
a_{i} \text { and } a_{j}
$$

imposed by a multiple alignment of k sequences

- Denote the score of this suboptimal (not necessarily optimal) pairwise alignment as

$$
s^{*}\left(a_{i}, a_{j}\right)
$$

- Sum up the pairwise scores for a multiple alignment:

$$
s\left(a_{1}, \ldots, a_{k}\right)=\Sigma_{i, j} s^{*}\left(a_{i}, a_{j}\right)
$$

Computing SP-Score

Aligning 4 sequences: 6 pairwise alignments

Given $a_{1}, a_{2}, a_{3}, a_{4}$:

$$
\begin{aligned}
s\left(a_{1} \ldots a_{4}\right)=\Sigma s^{*}\left(a_{\mathrm{i}}, a_{\mathrm{j}}\right)= & s^{*}\left(a_{1}, a_{2}\right)+s^{*}\left(a_{1}, a_{3}\right) \\
& +s^{*}\left(a_{1}, a_{4}\right)+s^{*}\left(a_{2}, a_{3}\right) \\
& +s^{*}\left(a_{2}, a_{4}\right)+s^{*}\left(a_{3}, a_{4}\right)
\end{aligned}
$$

SP-Score: Example
 a_{1} ATG-C-AAT
 - A-G-CATAT
 a_{k} ATCCCATTT

To calculate each column:

$$
s^{\prime}\left(a_{1} \ldots a_{k}\right)=\sum_{i, j} s^{*}\left(a_{i}, a_{j}\right) \longleftarrow\binom{n}{2} \text { Pairs of Sequences }
$$

Multiple Alignment: History

1975 Sankoff
Formulated multiple alignment problem and gave dynamic programming solution
1988 Carrillo-Lipman
Branch and Bound approach for MSA
1990 Feng-Doolittle
Progressive alignment
1994 Thompson-Higgins-Gibson-ClustalW
Most popular multiple alignment program 1998 Morgenstern et al.-DIALIGN

Segment-based multiple alignment
2000 Notredame-Higgins-Heringa-T-coffee
Using the library of pairwise alignments
2004 MUSCLE
What's next?

Problems with Multiple Alignment

- Multidomain proteins evolve not only through point mutations but also through domain duplications and domain recombinations
- Although MSA is a 30 year old problem, there were no MSA approaches for aligning rearranged sequences (i.e., multi-domain proteins with shuffled domains) prior to 2002
- Often impossible to align all protein sequences throughout their entire length

Profile Representation of Multiple Alignment

-	A	G	G	C	T	A	T		A			T	G
T	A	G		C	T	A	C	C	A		-		G
C	A	G	-	C	T	A	C	C	A	-	-	-	G
C	A	G	-	C	T	A	T		A		-	G	G
C	A	G	-	C	T	A	T		G		-	G	G

A	1				1	. 8			
C	. 6				. 4	1	. 6	2	
G		1	. 2						. 4
T	. 2			1	. 6				. 2
-	. 2		. 8				. 4	8	. 4

Profile Representation of Multiple Alignment

	-	A	G	G	C	T	A	T	C	A	C	C	T	G
	T	A	G	-	C	T	A	C	C	A	-	-	-	G
	C	A	G	-	C	T	A	C	C	A	-	-	-	G
	C	A	G	-	C	T	A	T	C	A	C	-	G	G
	C	A	G	-	C	T	A	T	C	G	C	-	G	G
A		1					1			. 8				
C	. 6				1			. 4	1		. 6	. 2		
G			1	. 2						. 2			. 4	1
T	. 2					1		. 6					. 2	
-	. 2			. 8							. 4	. 8	. 4	

In the past we were aligning a sequence against a sequence
Can we align a sequence against a profile?
Can we align a profile against a profile?

[^0]: Can not combine pairwise alignments into multiple alignment

