Multiple Sequence Alignment

Multiple Alignment versus Pairwise Alignment

- Up until now we have only tried to align two sequences.
- What about more than two? And what for?
- A faint similarity between two sequences becomes significant if present in many
- Multiple alignments can reveal subtle similarities that pairwise alignments do not reveal

Generalizing the Notion of Pairwise Alignment

- Alignment of 2 sequences is represented as a 2-row matrix
- In a similar way, we represent alignment of 3 sequences as a 3-row matrix

• Score: more conserved columns, better alignment

Alignments = Paths in

• Align 3 sequences: ATGC, AATC, ATGC

Alignment Paths

С

С

0	1	1	2	3	4
	А		Т	G	С

Т

Т

G

А

Α

Α

x coordinate

Alignment Paths

• Align the following 3 sequences:

ATGC, AATC, ATGC

0	1	1	2	3	4
	А		Т	G	С
0	1	2	3	3	4
	А	А	Т		С

x coordinate

y coordinate

Alignment Paths

0	1	1	2	3	4
	А		Т	G	С
0	1	2	3	3	4
	А	А	Т		С
0	0	1	2	3	4
		А	Т	G	С

- x coordinate
- y coordinate
- z coordinate
- Resulting path in (x,y,z) space:

 $(0,0,0) \rightarrow (1,1,0) \rightarrow (1,2,1) \rightarrow (2,3,2) \rightarrow (3,3,3) \rightarrow (4,4,4)$

Aligning Three Sequences

- Same strategy as aligning two sequences
- Use a 3-D "Manhattan Cube", with each axis representing a sequence to align
- For global alignments, go from source to sink

sink

2-D vs 3-D Alignment Grid

2-D edit graph

3-D edit graph

2-D cell versus 2-D Alignment Cell

In 2-D, 3 edges in each unit square

In 3-D, 7 edges in each unit cube

Architecture of 3-D Alignment Cell

Multiple Alignment: Dynamic Programming

•
$$S_{i,j,k} = \max \left\{ \begin{array}{c} s_{i-1,j-1,k-1} + \delta(v_i, w_j, u_k) \\ s_{i-1,j-1,k} + \delta(v_i, w_j, \ldots) \\ s_{i-1,j,k-1} + \delta(v_i, \ldots, u_k) \\ s_{i,j-1,k-1} + \delta(\ldots, w_j, u_k) \\ s_{i-1,j,k} + \delta(\ldots, w_j, u_k) \\ s_{i,j-1,k} + \delta(\ldots, w_j, \ldots) \\ s_{i,j,k-1} + \delta(\ldots, w_j, \ldots) \\ s_{i,j,k-1} + \delta(\ldots, u_k) \end{array} \right\}$$
 cube diagonal:
no indels

• $\delta(x, y, z)$ is an entry in the 3-D scoring matrix

Multiple Alignment: Running Time

- For 3 sequences of length *n*, the run time is 7*n*³; O(*n*³)
- For k sequences, build a k-dimensional Manhattan, with run time (2^k-1)(n^k); O (2^kn^k)
- Conclusion: dynamic programming approach for alignment between two sequences is easily extended to *k* sequences but it is impractical due to exponential running time

Multiple Alignment Induces Pairwise Alignments

Every multiple alignment induces pairwise alignments

x: AC-GCGG-C y: AC-GC-GAG z: GCCGC-GAG

Induces:

x: ACGCGG-C; x: AC-GCGG-C; y: AC-GCGAG y: ACGC-GAG; z: GCCGC-GAG; z: GCCGCGAG

Reverse Problem: Constructing Multiple Alignment from Pairwise Alignments

Given 3 arbitrary pairwise alignments:

- x: ACGCTGG-C; x: AC-GCTGG-C; y: AC-GC-GAG
- y: ACGC--GAG; z: GCCGCA-GAG; z: GCCGCAGAG

can we construct a multiple alignment that induces them?

Reverse Problem: Constructing Multiple Alignment from Pairwise Alignments

Given 3 arbitrary pairwise alignments:

x: ACGCTGG-C; x: AC-GCTGG-C; y: AC-GC-GAG y: ACGC--GAG; z: GCCGCA-GAG; z: GCCGCAGAG

can we construct a multiple alignment that induces them?

NOT ALWAYS

Pairwise alignments may be inconsistent

Combining Optimal Pairwise Alignments into Multiple Alignment

Can combine pairwise alignments into multiple alignment

(a) Compatible pairwise alignments

Can *not* combine pairwise alignments into multiple alignment

(b) Incompatible pairwise alignments

Multiple Alignment: Greedy Approach

- Choose most similar pair of strings and combine into a profile, thereby reducing alignment of k sequences to an alignment of of k-1 sequences/profiles. Repeat
- This is a heuristic greedy method

$$k \begin{cases} u_1 = ACGTACGTACGT... \\ u_2 = TTAATTAATTAA... \\ u_3 = ACTACTACTACT... \\ ... \\ u_k = CCGGCCGGCCGG \end{cases} u_1 = ACg/tTACg/tTACg/cT... \\ u_2 = TTAATTAACg/cT... \\ u_2 = TTAATTAATTAA... \\ u_2 = TTAATTAATTAA... \\ u_k = CCGGCCGGCCGGG... \end{cases} k-1$$

Greedy Approach: Example

- Consider these 4 sequences
 - *s1* GATTCA
 - *s2* GTCTGA
 - *s3* GATATT
 - s4 GTCAGC

Greedy Approach: Example (cont'd)

• There are
$$\binom{4}{2}$$
 = 6 possible alignments

- s2 GTCTGA s1 GATTCA-s4 GTCAGC (score = 2) s4 G-T-CAGC(score = 0)
- *s1* GAT-TCA *s2* G-TCTGA
- s2 G-TCTGA (score = 1) s3 GATAT-T (score = -1)
- *s1* **GAT-TCA** *s3* **GAT-ATT**
- s3 GATAT-T (score = 1) s4 G-TCAGC (score = -1)

Greedy Approach: Example (cont'd)

 s_2 and s_4 are closest; combine:

 $\begin{array}{ccc} s2 & \text{GTCTGA} \\ s4 & \text{GTCAGC} \end{array} \begin{array}{c} s_{2,4} & \text{GTCt/aGa/c} \\ \text{(profile)} \end{array}$

new set of 3 sequences:

 S_1 GATTCA S_3 GATATT $S_{2,4}$ GTCt/aGa/c

Progressive Alignment

- *Progressive alignment* is a variation of greedy algorithm with a somewhat more intelligent strategy for choosing the order of alignments.
- Progressive alignment works well for close sequences, but deteriorates for distant sequences
 - Gaps in consensus string are permanent
 - Use profiles to compare sequences

ClustalW

- Popular multiple alignment tool today
- 'W' stands for 'weighted' (different parts of alignment are weighted differently).
- Three-step process
 - 1.) Construct pairwise alignments
 - 2.) Build Guide Tree
 - 3.) Progressive Alignment guided by the tree

Step 1: Pairwise Alignment

- Aligns each sequence again each other giving a similarity matrix
- Similarity = exact matches / sequence length (percent identity)

(.17 means 17 % identical)

Step 2: Guide Tree

 Create Guide Tree using the similarity matrix

- ClustalW uses the neighbor-joining method
- Guide tree roughly reflects evolutionary relations

Step 3: Progressive Alignment

- Start by aligning the two most similar sequences
- Following the guide tree, add in the next sequences, aligning to the existing alignment
- Insert gaps as necessary

FOS_RAT FOS_MOUSE FOS_CHICK FOSB_MOUSE FOSB_HUMAN

Dots and stars show how well-conserved a column is.

Multiple Alignments: Scoring

• Number of matches (multiple longest common subsequence score)

• Entropy score

• Sum of pairs (SP-Score)

Multiple LCS Score

 A column is a "match" if all the letters in the column are the same

> AAA AAA AAT ATC

Only good for very similar sequences

Entropy

- Define frequencies for the occurrence of each letter in each column of multiple alignment
 - $$\begin{split} &-p_A = 1, \, p_T = p_G = p_C = 0 \; (1^{st} \; column) \\ &-p_A = 0.75, \, p_T = 0.25, \, p_G = p_C = 0 \; (2^{nd} \; column) \\ &-p_A = 0.50, \, p_T = 0.25, \, p_C = 0.25 \; p_G = 0 \; (3^{rd} \; column) \end{split}$$
- Compute entropy of each column

$$-\sum_{X=A,T,G,C} p_X \log p_X$$
AAA
AAT

AAA

Multiple Alignment: Entropy Score

Entropy for a multiple alignment is the sum of entropies of its columns:

$$\Sigma_{\text{over all columns}} \Sigma_{X=A,T,G,C} p_X \log p_X$$

Entropy of an Alignment: Example

$\frac{\text{column entropy}}{-(p_A \log p_A + p_C \log p_C + p_G \log p_G + p_T \log p_T)}$

A	Α	Α
A	С	С
А	С	G
Α	С	Т

•Column 2 = -[$(1/_4)*\log(1/_4) + (3/_4)*\log(3/_4) + 0*\log 0 + 0*\log 0$] = -[$(1/_4)*(-2) + (3/_4)*(-.415)$] = +0.811

•Column 3 = -[(¹/₄)*log(¹/₄)+(¹/₄)*log(¹/₄)+(¹/₄)*log(¹/₄)+(¹/₄) *log(¹/₄)] = 4* -[(¹/₄)*(-2)] = +2.0

•Alignment Entropy = 0 + 0.811 + 2.0 = +2.811

Inferring Pairwise Alignments from Multiple Alignments

 From a multiple alignment, we can infer pairwise alignments between all sequences, but they are not necessarily optimal

• This is like projecting a 3-D multiple alignment path on to a 2-D face of the cube

Multiple Alignment Projections

A 3-D alignment can be projected onto the 2-D plane to represent an alignment between a pair of sequences.

All 3 Pairwise Projections of the Multiple Alignment

Sum of Pairs Score(SP-Score)

- Consider pairwise alignment of sequences

 a_i and a_j
 imposed by a multiple alignment of k sequences
- Denote the score of this suboptimal (not necessarily optimal) pairwise alignment as

$$s^*(a_i, a_j)$$

• Sum up the pairwise scores for a multiple alignment:

$$s(a_1,...,a_k) = \sum_{i,j} s^*(a_i, a_j)$$

Computing SP-Score

Aligning 4 sequences: 6 pairwise alignments

Given a_1, a_2, a_3, a_4 : $s(a_1 \dots a_4) = \Sigma s^*(a_1, a_3) = s^*(a_1, a_2) + s^*(a_1, a_3) + s^*(a_1, a_4) + s^*(a_2, a_3) + s^*(a_2, a_4) + s^*(a_3, a_4)$

SP-Score: Example a_1 ATG-C-AAT \cdot A-G-CATAT a_k ATCCCATTT

To calculate each column:

$$s'(a_1...a_k) = \sum_{i,j} s^*([a_i, a_j) - \binom{n}{2}$$
 Pairs of Sequences

Multiple Alignment: History

1975 Sankoff

Formulated multiple alignment problem and gave dynamic programming solution

1988 Carrillo-Lipman

Branch and Bound approach for MSA **1990 Feng-Doolittle**

Progressive alignment

1994 Thompson-Higgins-Gibson-ClustalW

Most popular multiple alignment program 1998 Morgenstern et al.-DIALIGN

Segment-based multiple alignment 2000 Notredame-Higgins-Heringa-T-coffee

Using the library of pairwise alignments **2004 MUSCLE**

What's next?

Problems with Multiple Alignment

- Multidomain proteins evolve not only through point mutations but also through domain duplications and domain recombinations
- Although MSA is a 30 year old problem, there were no MSA approaches for aligning rearranged sequences (i.e., multi-domain proteins with shuffled domains) prior to 2002
- Often impossible to align all protein sequences throughout their entire length

Profile Representation of Multiple Alignment

A C G T

Profile Representation of Multiple Alignment

In the past we were aligning a sequence against a sequence

Can we align a sequence against a profile?

Can we align a profile against a profile?