Phylogenetics

The basics

- We will assume all life comes from a common ancestor
- Relationships can be illustrated using trees
 Phylogenetics' task is to infer these trees

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

Background

- Phylogenetics comes from phylogeny (evolutionary history)
- Phylogenetics can be morphological or molecular
 - Paper clips is morphological
 - Sequence alignments are molecular
- Two areas of research:
 - Molecular systematics: infer "tree of life"
 - Molecular evolution: understand molecules in the context of related species (e.g., Ka/Ks)

Building trees

Fitch and Margoliash (1967)
 Construction of phylogenetic trees.
 Science 155, 279-284.

• Based on protein sequences

Tree of life (mid 19th century)

http://www.ucmp.berkeley.edu/education/events/eukevol.html

Carl Woese

Early 16S rRNA tree

Woese's new tree of life. The position and length of each branch is determined by comparisons of ribosomal RNA

Phylogenetic tree basics

- Nodes: points that connect branches
- Branches: lines that connect nodes
- Taxa: things being compared
- Rooted tree: one node is the base
- Unrooted tree: no explicit starting point

Rooted vs unrooted

Unrooted

Rooted

Tree styles

- Trees can be thought of as a mobile
- Internal nodes represent common ancestors

Getting it right

- Some but not all distance based methods:
 - UPGMA
 - Neighbor joining
 - Invariant
 - Dollo
 - Wagner
 - Sokal

— ...

Why phylogenetics is hard

 Number of unrooted trees for more than 2 taxa is:

 $\frac{(2n-5)!}{(2n-3(n-3))!}$

• # of rooted trees for more than 1 taxa:

$$\frac{(2n-3)!}{(2n-2(n-2))!}$$

 Example: 34,459,425 unrooted trees for only ten taxa

Interesting study

- <u>http://www.pnas.org/content/99/22/1429</u>
 <u>2</u>
- First time phylogenetics was used in a criminal court case in the U.S.

Case study: SARS

- The text outlines the story of the origin of SARS and how phylogenetics played a role
- In the beginning, there was an outbreak in Vietnam; in only a few weeks, the WHO official and 5 hospital workers were dead

Back story

- Actually first appeared in Guangdong province, China late 2002
- Most people got sick in a hospital, one doctor in hospital visited Hong Hong
- Travelers staying on the same floor as the doctor, who died, then got sick
- These people brought it to other places in the world

Genomics

- This is a good example of how epidemology, and virology benefit from the tools and algorithms in this course.
- Soon we will discuss:
 - What kind of virus cause the epidemic?
 - What species is it from?
 - Where did it start?

But first....

- Lets review basics of infering phylogenies
- All molecular reconstruction methods assume you start with a set of aligned sequences
- This provides the *homology* information we need, and is critical.

Review

Source: Warren Ewens U. of Penn

Approaches

- Three main ways to build a tree:
 - Discrete (per site)
 - Distance (convert into pairwise distance)
 - Combination (make a tree from a bunch)
 - Optimal (looks at all possible trees)
 - Statistical (e.g., maximum likelihood)

Other species trees

http://members.aol.com/darwinpage/trees.htm

Example gene tree

Lodish et al. (2000)

Basic construction approaches

- Distance
 - Tree accounts for evolutionary distances estimated from data
- Parsimony
 - Tree that requires minimum about of change to explain the data
- Maximum likelihood
 - Tree that maximizes the likelihood of the data

Try it out again!

(make distance matrix to help)

1: AATAT
2: ATTAT
3: TTTTT
4: CCTTT

Source: Warren Ewens U. of Penn

Inference

- We infer trees because we don't really know all the species, esp. ancestors represented by internal nodes.
- Today, we'll start to discuss simple approaches for phylogenetic tree inference based on distance.

Reed et al. (2004)

Lice support the hypothesis that Homo erectus and Homo sapiens were separate for a period of time

Preparing for Thurs

- Input:
 - Data from a set of genes/species
- Output:
 - A phylogenetic tree that accurately characterizes the respective lineages

SARS

- The genome of SARS was sequenced by a Canadian group in April 2003
- 29,751bp, single stranded RNA sequence
- Has 5-6 genes in the typical structure of a coronavirus
 - One of the causes of the common cold

Where did SARS come from?

Himalayan palm civet

Neighbor joining can also be used to study epidemiology

Date of origin

 Genetic distance scales almost linearly with time

 Authors of the text estimate SARS jumped to humans around Sept 16 2002