Sequence Alignment

Brief review from last class

- DNA is has direction, we will use only one (5' -> 3') and generate the opposite strand as needed.
- DNA is a 3D object (see lecture 1) but we will model it as a 2D object/string.
- Two generative models of sequences:
 - Multinomial: probability is equal to product of individual probabilities (no prior dependence)
 - Markov: probabity is equal to product of probabilities given a fixed number of preceding characters.

Today

- The next two weeks, we will discuss sequence alignment and all of its basic flavors.
- Arguably one of the most important algorithms in bioinformatics; over 40 years old.
- The ultimate goal of alignment is to describe sequence similarity, or how closely two sequences match each other.
 - Can be a score (number)
 - Can also be an "alignment" (visual)

Similarity vs. biology

- Similarity (also called identity) is the number of matches / alignment length
- Homology, on the other hand, implies sequences came from a common ancestor
- Two kinds of homology:
 - Orthologous speciation-based split
 - Paralogous gene duplication-based split

Various types

Examples

Protein structure

Applications

- Prediction on function
 - Commonalities among sequences can imply similar functions
- Database searching (BLAST)
 - Find interesting genes in a new genome
- Sequence divergence
 - Look at evolutionary relationships
- Sequence assembly
 - Making a big sequence from a bunch of small ones

Global alignment

- Also called a *pairwise alignment*.
- Intuitive goal: related sequences will share many (most?) characters. To maximize this we introduce gaps represented by "-"

Two simple rules

- Rule #1:
 - A gap must be aligned to a nongap, i.e., "-" can not align to "-"
- Rule #2:
 - To distinguish good alignment from not so good ones, we introduce a scoring function *E*. Some functions have biological meaning, some are arbitrary.
- Consequence #1:
 - Alignment length can be no longer than sum of two sequences!

Example from text

- How do we align these proteins:
 VIVALASVEGAS
 - VIVADAVIS

Alignments

- Show one sequence placed above another such that similarity is revealed.
- Alignments can be longer than either string!

Example:

A :	С	A	Т	—	Т	С	A	-	С
B:	С	_	Т	С	G	С	A	G	С

Improving readability

Example:

A :	С	Α	Т	-	Т	С	A	—	С
	Ι				I		Ι		I
B:	С	_	Т	С	G	G	A	G	С

Scoring functions

• Here is a basic scoring function that rewards 1 for a match and -1 for a mismatch gap

$$E(-,a) = E(a,-) = E(a,b) = -1 \quad \forall a \neq b$$
$$E(a,b) = 1 \quad \forall a = b$$

• Can also be represented as a substitution matrix.

In class example

- S: CATCAC
- T: CTCCAGC

$$E(-,a) = E(a,-) = E(a,b) = -1 \quad \forall a \neq b$$
$$E(a,b) = 1 \quad \forall a = b$$

Measuring similarity

Score: A measure of alignment quality

	С	A	Т	-	Т	С	A	—	С		
	С	—	Т	С	G	С	A	G	С		
	10	-5	 10	 -5	 -2	10	10	-5	10		
Tot	al =	: 3	3								
	red tc.	as	E (C	,C)	E((A,-	-),	Е (Т	Г,Т),	, E(-,C	C),

Alignment overview

• Computationally, naïve alignments grow exponentially with *n* : not good

- There are 10^{17} alignments for two length 30 sequences.

- Luckily, a tried and true method for solving similar problems (we'll provide an overview today) comes to the rescue.
- First efficient algorithm published in 1970 by Needleman and Wunch, improved by Smith and Waterman in 1981.

Basic intuition

• Suppose we have an optimum alignment of size L. Is the following true?

•
$$A^* = A^*(s_1 \dots s_i, t_1 \dots t_j) + A^*(s_{i+1} \dots s_n, t_{j+1} \dots t_m)$$

- Where $|s| = n$ and $|t| = m$

• If so, what would happen if i = n - 1 and j = m - 1?

Visualization

Case 3: Match s[n] w/ gap s: C A T T C A C t: C - T T C A m-1

Global alignment

- Dynamic programming (DP) will save the day!
- DP is a general technique used when a large problem can be broken into smaller, easier problems like this.
- To solve sequence alignment, we will fix two substrings and find the best way to add the next character from at least one string.

Notation from Jackson and Aluru

- S(i,j) = E(Opt(A[0,i],B[0,j]))
 - "S(i,j) is the evaluated score of the optimal alignment between the prefix of A ending at position i and the prefix of B ending at position j."

$$S(n-1, m-1) = \max \begin{cases} S(n-2, m-2) + E(A[n-1], B[m-1]) \\ S(n-1, m-2) + E('-', B[m-1]) \\ S(n-2, m-1) + E(A[n-1], '-') \end{cases}$$
$$\begin{cases} S(i-1, j-1) + E(A[i], B[j]) \\ S(i, j-1) + E('-', B[j]) \\ S(i-1, j) + E(A[i], '-') \end{cases}$$

Requirements

- We will need four things to compute a global alignment:
 - 1. Substitution matrix (parameters)
 - 2. Recurrence relation
 - 3. Filling up a table
 - 4. Traceback

Pairwise Global Alignment

T[i,j] = Score of optimally aligning first *i* bases of *s* with first *j* bases of *t*.

$$T[i,j] = \max \begin{cases} T[i-1,j-1] + score(s[i],t[j]) \\ T[i-1,j] + g \\ T[i,j-1] + g \end{cases}$$

+10 for match, -2 for mismatch, -5 for space (rowwise)

λ	0	-5	-10	-15	-20	-25	-30	-35	-40
		-							
С	-5	10	5	0	-5	-10	-15	-20	-25
А	-10	5	8	3	-2	-7	0	-5	-10
Т	-15	0	15	-10	* 5	0	-5	-2	-7
Т	-20	-5	10*	13	8	3	-2	-7	-4
С	-25	-10	5	20	15	18	13	8	3
Α	-30	-15	0	15	18	13	28	-23	18
С	-35	-20	-5	10	13	28	23	26	33
									$\overline{}$

Traceback yields both optimal alignments in this example

Some Results

- Most pairwise sequence alignment problems can be solved in *O(mn)* time. Some speedups exist, most notably the Four Russians technique.
- Space requirement can be reduced to *O*(*m*+*n*), while keeping run-time fixed [Myers88].
- Two highly similar sequences can be aligned in *O(dn)* time, where *d* is a measure of the distance between the sequences [Landau86].

Pairwise Sequence Alignment

Variations for future classes:

- Given two sequences, find if parts of them are similar (local alignment).
- Given a large sequence and a short sequence, find if the short sequence is similar to a stretch of the long sequence.
- Cool fact is these are easy to do once we learn the basics of global alignment!