Sequence Alignment

Brief review from last class

- DNA is has direction, we will use only one ($5^{\prime}->3^{\prime}$) and generate the opposite strand as needed.
- DNA is a 3D object (see lecture 1) but we will model it as a 2D object/string.
- Two generative models of sequences:
- Multinomial: probability is equal to product of individual probabilities (no prior dependence)
- Markov: probabity is equal to product of probabilities given a fixed number of preceding characters.

Today

- The next two weeks, we will discuss sequence alignment and all of its basic flavors.
- Arguably one of the most important algorithms in bioinformatics; over 40 years old.
- The ultimate goal of alignment is to describe sequence similarity, or how closely two sequences match each other.
- Can be a score (number)
- Can also be an "alignment" (visual)

Similarity vs. biology

- Similarity (also called identity) is the number of matches / alignment length
- Homology, on the other hand, implies sequences came from a common ancestor
- Two kinds of homology:
- Orthologous - speciation-based split
- Paralogous - gene duplication-based split

Various types

Multiple

Spliced

Examples

Applications

- Prediction on function
- Commonalities among sequences can imply similar functions
- Database searching (BLAST)
- Find interesting genes in a new genome
- Sequence divergence
- Look at evolutionary relationships
- Sequence assembly
- Making a big sequence from a bunch of small ones

Global alignment

- Also called a pairwise alignment.
- Intuitive goal: related sequences will share many (most?) characters. To maximize this we introduce gaps represented by "-"

Two simple rules

- Rule \#1:
- A gap must be aligned to a nongap, i.e., "-" can not align to "-"
- Rule \#2:
- To distinguish good alignment from not so good ones, we introduce a scoring function E. Some functions have biological meaning, some are arbitrary.
- Consequence \#1:
- Alignment length can be no longer than sum of two sequences!

Example from text

- How do we align these proteins:
- VIVALASVEGAS
- VIVADAVIS

Alignments

- Show one sequence placed above another such that similarity is revealed.
- Alignments can be longer than either string!

Example:

$$
\begin{array}{cccccccccc}
\mathbf{A}: & \mathbf{C} & \mathbf{A} & \mathbf{T} & - & \mathbf{T} & \mathbf{C} & \mathbf{A} & - & \mathbf{C} \\
\mathrm{B}: & \mathbf{C} & - & \mathbf{T} & \mathbf{C} & \mathbf{G} & \mathbf{C} & \mathbf{A} & \mathbf{G} & \mathbf{C}
\end{array}
$$

Improving readability

Example:

$$
\begin{array}{cccccccccc}
A: & \mathbf{C} & \mathbf{A} & \mathbf{T} & - & \mathbf{T} & \mathbf{C} & \mathbf{A} & - & \mathbf{C} \\
& \mid & & \mid & & \mid & & \mid & & \mid \\
B: & \mathbf{C} & - & \mathbf{T} & \mathbf{C} & \mathbf{G} & \mathbf{G} & \mathbf{A} & \mathbf{G} & \mathbf{C}
\end{array}
$$

Scoring functions

- Here is a basic scoring function that rewards 1 for a match and -1 for a mismatch gap

$$
\begin{aligned}
& E(-, a)=E(a,-)=E(a, b)=-1 \quad \forall a \neq b \\
& E(a, b)=1 \quad \forall a=b
\end{aligned}
$$

- Can also be represented as a substitution matrix.

In class example

S: CATCAC
 T: CTCCAGC

$$
\begin{aligned}
& E(-, a)=E(a,-)=E(a, b)=-1 \quad \forall a \neq b \\
& E(a, b)=1 \quad \forall a=b
\end{aligned}
$$

Measuring similarity

Score: A measure of alignment quality

Total $=33$

Scored as $E(C, C) E(A,-), E(T, T), E(-, C)$, etc.

Alignment overview

- Computationally, naïve alignments grow exponentially with n : not good
- There are 10^{17} alignments for two length 30 sequences.
- Luckily, a tried and true method for solving similar problems (we' ll provide an overview today) comes to the rescue.
- First efficient algorithm published in 1970 by Needleman and Wunch, improved by Smith and Waterman in 1981.

Basic intuition

- Suppose we have an optimum alignment of size L. Is the following true?
- $\mathrm{A}^{*}=\mathrm{A}^{*}\left(s_{1} \ldots s_{\mathrm{i}}, \mathrm{t}_{1} \ldots \mathrm{t}_{\mathrm{j}}\right)+\mathrm{A}^{*}\left(s_{\mathrm{i}+1} \ldots s_{\mathrm{n}, \mathrm{t}_{\mathrm{j}+1} \ldots} \mathrm{t}_{\mathrm{m}}\right)$
- Where $|s|=n$ and $|t|=m$
- If so, what would happen if $i=n-1$ and $j=m-1$?

Visualization

Case 1: Match $s[n] w / t[m]$

$$
\begin{array}{ccccccc|c}
\mathbf{s}: & \mathbf{C} & \mathbf{A} & \mathbf{T} & \mathbf{T} & \mathbf{C} & \mathbf{A} & \mathbf{C} \\
\mathbf{t}: & \mathbf{C} & - & \mathbf{T} & \mathbf{T} & \mathbf{C} & \mathbf{A} & \mathbf{G} \\
& & & & \mathrm{m} & -1 & \mathbf{m}
\end{array}
$$

Case 2: Match $t[\mathrm{~m}]$ w/ gap

\[

\]

Case 3: Match $s[n]$ w/ gap

$$
\begin{array}{lllllll|ll}
\mathbf{s}: & \mathbf{C} & \mathbf{A} & \mathbf{T} & \mathbf{T} & \mathbf{C} & \mathbf{A} & \mathrm{C} \\
\mathbf{t}: & \mathbf{C} & - & \mathbf{T} & \mathbf{T} & \mathbf{C} & \mathbf{A} & - \\
\mathbf{n}
\end{array}
$$

Global alignment

- Dynamic programming (DP) will save the day!
- DP is a general technique used when a large problem can be broken into smaller, easier problems like this.
- To solve sequence alignment, we will fix two substrings and find the best way to add the next character from at least one string.

Notation from Jackson and Aluru

- $\mathrm{S}(\mathrm{i}, \mathrm{j})=E(O p t(A[0, i], B[0, j]))$
- " $\mathrm{S}(\mathrm{i}, \mathrm{j})$ is the evaluated score of the optimal alignment between the prefix of A ending at position i and the prefix of B ending at position j."

$$
\begin{aligned}
& S(n-1, m-1)=\left\{\begin{array}{l}
S(n-2, m-2)+E(A[n-1], \text { B }[m-1]) \\
\left.S(n-1, m-2)+E\left(-^{\prime}, \text { B } m-1\right]\right) \\
S(n-2, m-1)+E\left(A[n-1], '^{\prime}\right)
\end{array}\right. \\
& S(i, j)=\max ^{2}\left\{\begin{array}{l}
S(i-1, j-1)+E(A[i], B[j]) \\
S(i, j-1)+E\left('^{\prime}, B[j]\right) \\
S(i-1, j)+E\left(A[i], '^{\prime}\right)
\end{array}\right.
\end{aligned}
$$

Requirements

- We will need four things to compute a global alignment:

1. Substitution matrix (parameters)
2. Recurrence relation
3. Filling up a table
4. Traceback

Pairwise Global Alignment

$T[i, j]=$ Score of optimally aligning first i bases of s with first j bases of t.

$$
T[i, j]=\max \left\{\begin{array}{l}
T[i-1, j-1]+\operatorname{score}(s[i], t[j]) \\
T[i-1, j]+g \\
T[i, j-1]+g
\end{array}\right.
$$

	λ	C	T	C	G	C	A	G	C
λ	0	-5	-10	-15	-20	-25	-30	-35	-40
C		10							
A	-10								
T	-15								
T	-20								
C	-25								
A	-30								
C	-35								

+10 for match, -2 for mismatch, -5 for space (rowwise)

	λ	C	T	C	G	C	A	G	C
λ	0	-5	-10	-15	-20	-25	-30	-35	-40
C	-5	10	5	0	-5	-10	-15	-20	-25
A	-10	5	8	3	-2	-7	0	-5	-10
T	-15	0	15	10	+ 5	0	-5	-2	-7
T	-20	-5	10 *	13	8	3	-2	-7	-4
C	-25	-10	5	20	15	18	13	8	3
A	-30	-15	0	15	18	13	28	23	18
C	-35	-20	-5	10	13	28	23	26	33

Traceback yields both optimal alignments in this example

Some Results

- Most pairwise sequence alignment problems can be solved in $O(m n)$ time. Some speedups exist, most notably the Four Russians technique.
- Space requirement can be reduced to $O(m+n)$, while keeping run-time fixed [Myers88].
- Two highly similar sequences can be aligned in $O(d n)$ time, where d is a measure of the distance between the sequences [Landau86].

Pairwise Sequence Alignment

Variations for future classes:

- Given two sequences, find if parts of them are similar (local alignment).
- Given a large sequence and a short sequence, find if the short sequence is similar to a stretch of the long sequence.
- Cool fact is these are easy to do once we learn the basics of global alignment!

