
Sequence alignment 
(continued) 



Various types 



Global Alignment (review) 

•  Input: Two strings, labeled s and t 
–  |s| is n 
–  |t| is m 

•  Output: Two strings sA and tA such that: 
–  sA and tA are of equal length L 
–  Characters must be in same order, with �-� 

spacers as needed 
–  If sA[i] = �-�, then tA [i] ≠ �-� 
–  If tA[i] = �-�, then sA [i] ≠ �-� 



Visual alignments 
Score: A measure of alignment quality 

 
     C  A  T  -  T  C  A  -  C 
     C  -  T  C  G  C  A  G  C 
   -------------------------------- 
    10 -5 10 -5 -2 10 10 -5 10     
 
Total =  33 
 
Scored as E(C,C) E(A,-), E(T,T), E(-,C), 
etc. 



Types of scores 
•  Reasons: 

–  Sequencing error(s) 
–  Evolutionary change 

•  Three parameters 
–  Gap (indel?) 
–  Mismatch (misread base?) 
–  Match (no change) 

•  We will only consider constant gap penalties 
for now. 



Optimal alignment 

•  We want to find an alignment that optimizes 
an evaluation function E(sA, tA) 

•  The �brute force� method is a hard problem 
(NP-hard) requiring exponential time. 

•  Dynamic programming, in cases we will 
discuss, can be used to solve this problem 
efficiently. 



Requirements 

•  We will need four things to compute a 
global alignment: 

1.  Substitution matrix (parameters) 
2.  Recurrence relation 
3.  Filling up a table 
4.  Traceback 



€ 

T i, j[ ] =  max  

T[i −1, j −1] + score s i[ ] ,t j[ ]( )
T i −1, j[ ] + g

T i, j −1[ ] + g

# 

$ 
% 

& 
% 

We can solve this based on 
looking at three smaller 
problems 



λ        C       T        C       G       C       A        G       C 

A 
C 

T 

T 

C 
A 

C 

+10 for match, -2 for mismatch, -5 for space (rowwise) 

 0  -5 -10 -15 -20 -25 -30 -35 -40 
-5 
-10 
-15 
-20 
-25 
-30 
-35 

10  5 
λ 



0 -5 -10 -15 -20 -25 -30 -35 -40 

-5 10 5 0 -5 -10 -15 -20 -25 

-10 5 8 3 -2 -7 0 -5 -10 

-15 0 15 10 5 0 -5 -2 -7 

-20 -5 10 13 8 3 -2 -7 -4 

-25 -10 5 20 15 18 13 8 3 

-30 -15 0 15 18 13 28 23 18 

-35 -20 -5 10 13 28 23 26 33 

  λ        C       T        C       G       C       A        G       C 

A 
C 

T 

T 

C 
A 

C 

λ 

Traceback yields both optimal alignments in this example 

* 
* 



End-gap free alignment 
•  We often don�t want to penalize gaps at the start or 

end of the alignment, especially when comparing 
short and long sequences 

•  Same as global alignment, except: 
–  Initialize with zeros (free gaps at start) 
–  Locate max in the last row/column (free gaps at end) 

•  Also called semiglobal alignment 



Example paths 



Example traceback paths 



T[i, 0] = 0      T[0, j] = 0 

€ 

T i, j[ ] =  max  

T[i −1, j −1] + score s i[ ] ,t j[ ]( )
T i −1, j[ ] + g

T i, j −1[ ] + g

# 

$ 
% 

& 
% 

S = CATTA 
T = ACATTAG Find the score of 

the best semiglobal  
alignment 

Practice 

Match = 5 
Mismatch = -2 
Gap = -3 



10   5  10   5  10   5   0  10 

λ        C       T        C       G       C       A        G       C 

A 
C 

T 

T 

C 
A 

G 

+10 for match, -2 for mismatch, -5 for space (rowwise) 

 0   0   0   0   0   0   0   0   0 
 0 
  0 
  0 
  0 
  0 
  0 
  0 

λ 

 5   8   5   8   5  20  15  10 
 0  15  10   5   6  15  18  13 
-2  10  13   8   3  10  13  16 
10   5  20  15  18  13   8  23 
 5   8  15  18  13  28  23  18 
 0   3  10  25  20  23  38  33 



Local Alignment 

Initialize top row and leftmost column to zero. 

T [i, j] = Score of optimally aligning a suffix  
           of s with a suffix of t. 

€ 

T i, j[ ] =  max  

T[i −1, j −1] + score s i[ ],t j[ ]( )
T i −1, j[ ] + g

T i, j −1[ ] + g
0

# 

$ 

% 
% 

& 

% 
% 



T[i, 0] = 0      T[0, j] = 0 

€ 

T i, j[ ] =  max  

T[i −1, j −1] + score s i[ ] ,t j[ ]( )
T i −1, j[ ] + g

T i, j −1[ ] + g
0

# 

$ 

% 
% 

& 

% 
% 

S = CTACT 
T = ATACG Find the score of 

the best local alignment 

Practice 

Match = 5 
Mismatch = -2 
Gap = -3 



0 0 0 0 0 0 0 0 0 
0 1 0 1 0 1 0 0 1 
0 0 0 0 0 0 2 0 0 
0 0 1 0 0 0 0 1 0 
0 0 1 0 0 0 0 0 0 
0 1 0 2 0 1 0 0 1 
0 0 0 0 1 0 2 0 0 
0 1 0 1 0 2 0 1 1 

  λ        C       T        C       G       C       A        G       C 

A 
C 

T 

T 

C 
A 

C 

λ 

+1 for a match, -1 for a mismatch, -5 for a gap 



Reducing space requirements 

•  O (mn) tables are often the limiting 
factor in computing large alignments 

•  There is a linear space technique that 
only doubles the time required  
[Hirschberg77] 



 
Alignment and new 

architectures 

•  http://en.wikipedia.org/wiki/Smith-
Waterman_algorithm 


