Lecture 8

Hidden Markov Models



Big questions for today

» Evaluation
— How likely is a sequence given a model?

— More formally, given a model M and a sequence s,
find Pr(s | M).

* Decoding (or inference)

— Given a sequence and a model, try and figure out
which states were visited.

— More formally, given a model M and an
observation sequence s, find a state sequence t
such that Pr (s,t | M) is maximal.



Central problems w/ HMMSs

 Evaluation

— Probability of a particular observation
sequence given a model

— P(O|model)

— Complicated as states (i.e., coaches) are
hidden

— Useful for sequence classification (next
week; see online PDF)



Important problems

* Decoding:
— Optimal state sequence to produce given
observations under a specific model

— Optimality is used (just like alignment from
before)

— Used for sequence recognition such as
gene finding (next week)



Uses of decoding

* Your dorm is hosting a casino night.

* The following sequence of rolls occurs:
— 1534662666366664666656464646662

 Should the dice be checked?

— By eye, a likely state sequence has a many
loaded states where 6 is more likely



Solutions

Problem Algorithm | Complexity

Evaluation |Forward/ O(TN?)
Backward

Decoding Viterbi O(TN?)

Learning Baum-Welch | O(TN?)

(EM)

T is # timesteps (or observations)

N = # states




Notation (Rabiner)

Let T be the number of observations
Note T is also the number of states visited

Sequence of visited states:
- Q= 949,9594--97

Sequence of emitted symbols:
- O — 01020304..07-

Model = A= <N’M’{ni}’{aij}’{bi(i)}>



Previous example: play calling

« Suppose we simplified the ND offensive
playbook into three plays:

— Run
— Pass short
— Long pass

* Further, suppose there are two at most two
offensive coaches:

— Coach Kelly
— Offensive coordinator Long



In class HMM: Play calling

* Coach Kelly:
— P(run) = 0.1
— P(short pass) = 0.1
— P(long pass) = 0.8

» Offensive coordinator:
— P(run) = 0.8:
— P(short pass) = 0.15
— P(long pass) = 0.05
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Naive solution for evaluation

 Detalls are in handout, but in short we
want to compute:

P(O|2) =y P(O|q,A)P(q| 1)

* This sums all over all state paths

 Note: There are N*T state paths, where
T Is the number of observations



Dynamic programming to the
rescue (again)

Forward algorithm:

* Define auxiliary forward variable a:
at(i) = P(Ol,...,Ot | q: = i,A)

ay(i) is the probability of observing a partial sequence of
observables 04,...0; such that at time t, state q,=i



The detalls

Recursive algorithm:
— Initialise:

a,(i)=me, (o,)
(Partial obs seq to t AND state j at f)
X (transition to j at t+7) x (sensor)

Sum, as can reach j from
a.l\l)a 0 ’
1 (J) = [2 (D)a;le;(0:) any preceding state

— Calculate:

— Obtain: o incorporates partial obs seq to t

PO[A) = Zar(i)

Sum of different ways
of getting obs seq

Complexity is O(N2T)
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The occasionally dishonest casino — Forward algorithm

smissionsi t 2.2 1 2 °| |Algorithm: Forward algorithm
State F 1/6 1/6 1/6 1/6 1/6 1/6 Initialisation (i = 0):  fo(0) =1, £(0) =0 for k > 0,
State L. 0.1 0.1 0.1 0.1 0.1 0.5 ) )
Recursion ( = 1...L): fi(i)= ez(x,-)ka(i ~ Day.
Transitons: 1 2 0 . ’
——————————————————————— Termination: P(x) = Z FelL)a.
State 0 0.50 0.50 0.00 i
State 1 0.94 0.05 0.01
State 2 0.89 0.10 0.01
X; 1 2 6 6 6 5 | end
e, (x) 0.1667 |0.1667 |0.1667 [|0.1677 [0.1677 [0.1677
e,(x) 0.1000 | 0.1000 | 0.5000 |0.5000 |0.5000 [0.1000




Problem 2: Decoding

« Choose state sequence to maximize
probability of an observed sequence

* The Viterbi algorithm is an inductive
algorithm that keeps the * best * state
sequence for each prefix of
observations



Some details

» State sequence to maximise P(O,Q|A):

P(qlaqza'-'qT | Oaﬂ')

* Define auxiliary variable o:
0,(i) = max P(gy, 4, G, =1,01,025--0, | A)

O(i) — the probability of the most probable
path ending in state g;=i



Initialization

 Consider the case Iin class where we
have a start state where 0 characters
were observed.

* Fy(0) =1 given we always start here

* F(0) = 0 for all non-silent states



Algorithm: Forward algorithm

Initialisation (i = 0):  fp(0) =1, f(0) =0 fork = 0,
The structure of the

Recursion (i = 1.., ‘L): fili) = ey(x;) Z Je(i — Dyay. Forward algorithm is
k | essentially the same
Termination: P(x) = L) as that of the Viterbi
2:‘ ikl algorithm, except that

a maximization

—— operation 1is replaced
Algorithm: Viterbi by summation.

Initialisation (i = 0):  vp(0) =1, v,(0) =0 for k > 0.

Recursion (i = 1...L): v ({) = e;(x;) maxg (v (i — Dag);
ptr; (/) = argmax, (vr (i — Dagw).

Termination: P(x,7r*) = max{vi(L)aro);
7y == argmax, (ve(L)axo).

Traceback (i == L...1): 7} | = ptr; (7).




The occasionally dishonest casino — Viterbi algorithm

Emissions: 2 3 4 o Algorithnl: Viterbi
———————————————————————————————— Initialisation (i = 0):  vp(0) = 1, v,(0) =0 for k > 0.
State F 1/6 1/6 1/6 1/6 1/6 1/6 o .
State L 0.1 0.1 0.1 0.1 0O 0.5 Recursion (i = 1...L): u(i) = e;(x;) maxg(ve (i — Dag);
ptr; (1) = argmax; (vr (i — ag).

Transitons: 2 0 L.
_______________________ Termination: P{x,m*) = maxg{vp(L)aro):
State 0 0.50 0.50 0.00 7y == argmax; (Ve(L)axo).
State 1 0.94 0.05 0.01 . ,
State 2 0.89 0.10 0.01 Traceback (i == L... 1) | = ptr;(z).

X; 1 2 6 6 6 5 | end

61(X,) 0.1l6007 0.1l607 0.1l607 0.1677 0.1677 0.1677

e2(x,) 0.1000 0.1000 0.5000 0.5000 0.5000 0.1000




Observed sequence, hidden path and Viterbi path

Rolls 315116246446644245311321631164152133625144543631656626566666
Die FFFFPF P FFFFFFFFFFFFFFFFFFFFFFFFFRFFFFFFFFFFLLLLLLLLLLLLLLL
Vitexrbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFRFFFFFFFFFFFFFLLLLLLLLLLLL

Rolls 651166453132651245636664631636663162326455236266666625151631
Die LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLEFFFFFFFF
Viterbi LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL?FFFFFFF

Rolls 222555441666566562564324364131513465146353411126414626253356
Die FFFFFFFFLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFELL
Viterbi FFFFFFFFFFFFFFFFFFFFFFPFFFFFFFFFFFFFFFFFFFFFFFFFFFFREFEFFFFL

Rells 366163666466232534413661661163252562462255265252266435353336
Die LLLLLLLLFFFFFFPFFEFFFFFFFFFFFFFFFFFFFFFFPRFPPEFFFFFFAPFEFFFFFF
Viterbi LLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFPFFRFPFFFRPPPFFFFFPRERFPFPREFF

Rolls 233121625364414432335163243633665562466662632666612355245242
Die FFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLFFFFFFFPRFER
Viterbi FFFFFFFFFFFFFFFFFFPFFFFPFFFFFFLLLLLLLLLLLLLLLLLLLFFFRFEFFFFF

Figure 3.5 The numbers show 300 rolls of a die as described in the exam-
ple. Below is shown which die was actually used for that roll (F for fair and
L for loaded). Under that the prediction by the Viterbi algorithm is shown.

From Durbin



