Lecture 8

Hidden Markov Models

Big questions for today

- Evaluation
 - How likely is a sequence given a model?
 - More formally, given a model M and a sequence s, find $Pr(s \mid M)$.
- Decoding (or inference)
 - Given a sequence and a model, try and figure out which states were visited.
 - More formally, given a model M and an observation sequence s, find a state sequence t such that Pr (*s*,*t* | *M*) is maximal.

Central problems w/ HMMs

- Evaluation
 - Probability of a particular observation sequence given a model
 - P(O|model)
 - Complicated as states (i.e., coaches) are hidden
 - Useful for sequence classification (next week; see online PDF)

Important problems

- Decoding:
 - Optimal state sequence to produce given observations under a specific model
 - Optimality is used (just like alignment from before)
 - Used for sequence recognition such as gene finding (next week)

Uses of decoding

- Your dorm is hosting a casino night.
- Should the dice be checked?
 - By eye, a likely state sequence has a many loaded states where 6 is more likely

Solutions

Problem	Algorithm	Complexity
Evaluation	Forward/ Backward	O(<i>TN</i> ²)
Decoding	Viterbi	O(<i>TN</i> ²)
Learning	Baum-Welch (EM)	O(<i>TN</i> ²)

T is # timesteps (or observations) N = # states

Notation (Rabiner)

- Let *T* be the number of observations
- Note *T* is also the number of states visited
- Sequence of visited states: $-Q = q_1 q_2 q_3 q_4 \dots q_T$
- Sequence of emitted symbols: $- O = O_1 O_2 O_3 O_4 ... O_T$

Model =
$$\lambda = \langle N, M, \{\pi_i\}, \{a_{ij}\}, \{b_i(j)\} \rangle$$

Previous example: play calling

- Suppose we simplified the ND offensive playbook into three plays:
 - Run
 - Pass short
 - Long pass
- Further, suppose there are two at most two offensive coaches:
 - Coach Kelly
 - Offensive coordinator Long

In class HMM: Play calling

- Coach Kelly:
 - P(run) = 0.1
 - P(short pass) = 0.1
 - P(long pass) = 0.8
- Offensive coordinator:
 - P(run) = 0.8:
 - P(short pass) = 0.15
 - P(long pass) = 0.05

ND Football Game

Naïve solution for evaluation

• Details are in handout, but in short we want to compute:

$$P(O \mid \lambda) = \sum_{q} P(O \mid q, \lambda) P(q \mid \lambda)$$

- This sums all over all state paths
- Note: There are N^T state paths, where T is the number of observations

Dynamic programming to the rescue (again)

Forward algorithm:

Define auxiliary forward variable α:

$$\alpha_t(i) = P(o_1, \dots, o_t \mid q_t = i, \lambda)$$

 $\alpha_t(i)$ is the probability of observing a partial sequence of observables $o_1, \ldots o_t$ such that at time t, state $q_t=i$

The details

- Recursive algorithm:
 - Initialise:

The Trelis

The occasionally dishonest casino – Forward algorithm

Emission	s: 1	2	3	4	5	6
State F	1/6	1/6	1/6	1/6	1/6	1/6
State L	0.1	0.1	0.1	0.1	0.1	0.5

Transi	ito	ns: 1	2	0
State	0	0.50	0.50	0.00
State	1	0.94	0.05	0.01
State	2	0.89	0.10	0.01

Algorithm: Forward algorithmInitialisation
$$(i = 0)$$
: $f_0(0) = 1, f_k(0) = 0$ for $k > 0$.Recursion $(i = 1 \dots L)$: $f_l(i) = e_l(x_l) \sum_k f_k(i-1)a_{kl}$.Termination: $P(x) = \sum_k f_k(L)a_{k0}$.

X _i	1	2	6	6	6	5	end
$e_1(x_i)$	0.1667	0.1667	0.1667	0.1677	0.1677	0.1677	
$e_2(x_i)$	0.1000	0.1000	0.5000	0.5000	0.5000	0.1000	

Problem 2: Decoding

- Choose state sequence to maximize
 probability of an observed sequence
- The Viterbi algorithm is an inductive algorithm that keeps the * best * state sequence for each prefix of observations

Some details

• State sequence to maximise $P(O,Q|\lambda)$:

 $P(q_1, q_2, ..., q_T | O, \lambda)$

• Define auxiliary variable δ :

$$\delta_t(i) = \max_q P(q_1, q_2, ..., q_t = i, o_1, o_2, ..., o_t | \lambda)$$

 $\delta_t(i)$ – the probability of the most probable path ending in state $q_t=i$

Initialization

- Consider the case in class where we have a start state where 0 characters were observed.
- $F_0(0) = 1$ given we always start here
- $F_k(0) = 0$ for all non-silent states

Algorithm: Forward al	gorithm
Initialisation $(i = 0)$:	$f_0(0) = 1, f_k(0) = 0$ for $k > 0$.
Recursion $(i = 1 \dots L)$:	$f_l(i) = e_l(x_i) \sum_k f_k(i-1)a_{kl}.$
Termination:	$P(x) = \sum_{k} f_k(L) a_{k0}.$

Algorithm: Viterbi

Initialisation $(i = 0)$:	$v_0(0) = 1, v_k(0) = 0$ for $k > 0$.
Recursion $(i = 1 \dots L)$:	$v_l(i) = e_l(x_i) \max_k (v_k(i-1)a_{kl});$ ptr _i (l) = argmax _k (v _k (i-1)a_{kl}).
Termination:	$P(x, \pi^*) = \max_k(v_k(L)a_{k0});$ $\pi_L^* = \operatorname{argmax}_k(v_k(L)a_{k0}).$
Traceback $(i = L \dots 1)$:	$\pi_{i-1}^* = \operatorname{ptr}_i(\pi_i^*).$

The structure of the Forward algorithm is essentially the same as that of the Viterbi algorithm, except that a maximization operation is replaced by summation.

The occasionally dishonest casino – Viterbi algorithm

Emission	s: 1	2	3	4	5	6
State F State L	1/6 0.1	1/6 0.1	1/6 0.1	1/6 0.1	1/6 0.1	1/6 0.5
Transito	ns: 1		2	0		
State 0	0.50	0.5	50 0.	.00		

State 1 0.94 0.05 0.01

State 2 0.89 0.10 0.01

Algorithm: Viterbi Initialisation (i = 0): $v_0(0) = 1, v_k(0) = 0$ for k > 0. Recursion (i = 1...L): $v_l(i) = e_l(x_i) \max_k (v_k(i-1)a_{kl});$ $\operatorname{ptr}_i(l) = \operatorname{argmax}_k(v_k(i-1)a_{kl}).$ Termination: $P(x,\pi^*) = \max_k(v_k(L)a_{k0});$ $\pi_L^* = \operatorname{argmax}_k(v_k(L)a_{k0}).$ Traceback (i = L ... 1): $\pi_{i-1}^* = \text{ptr}_i(\pi_i^*)$.

X _i	1	2	6	6	6	5	end
$e_1(x_i)$	0.1667	0.1667	0.1667	0.1677	0.1677	0.1677	
$e_2(x_i)$	0.1000	0.1000	0.5000	0.5000	0.5000	0.1000	

Observed sequence, hidden path and Viterbi path

Rolls Die Viterbi	315116246446644245311321631164152133625144543631656626566666 FFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls Die Viterbi	6511664531326512456366646316366631623264552362666666625151631 LLLLLFFFFFFFFFFFFFFLLLLLLLLLLLLLFFFFLLLL
Rolls Die Viterbi	222555441666566563564324364131513465146353411126414626253356 FFFFFFFFFLLLLLLLLFPFFFFFFFFFFFFFFFFFFF
Rolls Die Viterbi	366163666466232534413661661163252562462255265252266435353336 LLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls Die Viterbi	233121625364414432335163243633665562466662632666612355245242 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Figure 3.5 The numbers show 300 rolls of a die as described in the example. Below is shown which die was actually used for that roll (F for fair and L for loaded). Under that the prediction by the Viterbi algorithm is shown.

From Durbin