Lecture 8

Hidden Markov Models

Big questions for today

- Evaluation
- How likely is a sequence given a model?
- More formally, given a model M and a sequence s , find $\operatorname{Pr}(s \mid M)$.
- Decoding (or inference)
- Given a sequence and a model, try and figure out which states were visited.
- More formally, given a model M and an observation sequence s, find a state sequence t such that $\operatorname{Pr}(s, t \mid M)$ is maximal.

Central problems w/ HMMs

- Evaluation
- Probability of a particular observation sequence given a model
- P(O|model)
- Complicated as states (i.e., coaches) are hidden
- Useful for sequence classification (next week; see online PDF)

Important problems

- Decoding:
- Optimal state sequence to produce given observations under a specific model
- Optimality is used (just like alignment from before)
- Used for sequence recognition such as gene finding (next week)

Uses of decoding

- Your dorm is hosting a casino night.
- The following sequence of rolls occurs: - 1534662666366664666656464646662
- Should the dice be checked?
- By eye, a likely state sequence has a many loaded states where 6 is more likely

Solutions

Problem	Algorithm	Complexity
Evaluation	Forward/ Backward	$\mathrm{O}\left(T N^{2}\right)$
Decoding	Viterbi	$\mathrm{O}\left(T N^{2}\right)$
Learning	Baum-Welch (EM)	$\mathrm{O}\left(T N^{2}\right)$

T is \# timesteps (or observations) $N=\#$ states

Notation (Rabiner)

- Let T be the number of observations
- Note T is also the number of states visited
- Sequence of visited states:
$-Q=q_{1} q_{2} q_{3} q_{4} \ldots q_{T}$
- Sequence of emitted symbols:
$-\mathrm{O}=\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3} \mathrm{O}_{4} \ldots \mathrm{O}_{T}$

$$
\text { Model }=\quad \lambda=\left\langle N, M,\left\{\pi_{i}\right\},\left\{a_{i j}\right\},\left\{b_{i}(j)\right\}\right\rangle
$$

Previous example: play calling

- Suppose we simplified the ND offensive playbook into three plays:
- Run
- Pass short
- Long pass
- Further, suppose there are two at most two offensive coaches:
- Coach Kelly
- Offensive coordinator Long

In class HMM: Play calling

- Coach Kelly:
$-P($ run $)=0.1$
-P (short pass) $=0.1$
$-\mathrm{P}($ long pass $)=0.8$
- Offensive coordinator:
-P (run) $=0.8$:
$-P($ short pass $)=0.15$
$-\mathrm{P}($ long pass $)=0.05$

ND Football Game

Naïve solution for evaluation

- Details are in handout, but in short we want to compute:

$$
P(O \mid \lambda)=\sum_{q} P(O \mid q, \lambda) P(q \mid \lambda)
$$

- This sums all over all state paths
- Note: There are N^{\wedge} T state paths, where T is the number of observations

Dynamic programming to the rescue (again)

Forward algorithm:

- Define auxiliary forward variable α :

$$
\alpha_{t}(i)=P\left(o_{1}, \ldots, o_{t} \mid q_{t}=i, \lambda\right)
$$

$\alpha_{t}(i)$ is the probability of observing a partial sequence of observables $\mathrm{o}_{1}, \ldots \mathrm{o}_{\mathrm{t}}$ such that at time t , state $\mathrm{q}_{\mathrm{t}}=\mathrm{i}$

The details

Recursive algorithm:

- Initialise:

$$
\alpha_{1}(i)=\pi_{i} e_{i}\left(o_{1}\right)
$$

- Calculate:
- Obtain:

$$
\alpha_{t+1}(j)=\left[\sum_{i=1}^{N} \begin{array}{l|l}
\alpha_{t}(i) a_{i j} e_{j}\left(o_{t+1}\right) & \begin{array}{c}
\text { Sum, as can reach } j \text { from } \\
\text { any preceding state }
\end{array} \\
\alpha \text { 位corporates partial obs seq to } t
\end{array}\right.
$$

$$
P(O \mid \lambda)=\sum_{i=1}^{N} \alpha_{T}(i)
$$

Sum of different ways of getting obs seq

The Trelis

The occasionally dishonest casino - Forward algorithm

```
Emissions: 1 
```

$$
\begin{aligned}
& \text { Algorithm: Forward algorithm } \\
& \text { Initialisation }(i=0): \quad f_{0}(0)=1, f_{k}(0)=0 \text { for } k>0 \text {. } \\
& \text { Recursion }(i=1 \ldots L): \quad f_{l}(i)=e_{l}\left(x_{i}\right) \sum_{k} f_{k}(i-1) a_{k l} \text {. } \\
& \text { Termination: } \\
& P(x)=\sum_{k} f_{k}(L) a_{k 0} .
\end{aligned}
$$

```
Transitons: 1 2 0
-------------------------
State 1 0.94 0.05 0.01
State 2 0.89 0.10 0.01
```

x_{i}	1	2	6	6	6	5	end
$e_{1}\left(x_{i}\right)$	0.1667	0.1667	0.1667	0.1677	0.1677	0.1677	
$e_{2}\left(x_{i}\right)$	0.1000	0.1000	0.5000	0.5000	0.5000	0.1000	

Problem 2: Decoding

- Choose state sequence to maximize probability of an observed sequence
- The Viterbi algorithm is an inductive algorithm that keeps the * best * state sequence for each prefix of observations

Some details

- State sequence to maximise $\mathrm{P}(\mathrm{O}, \mathrm{Q} \mid \lambda)$:

$$
P\left(q_{1}, q_{2}, \ldots q_{T} \mid O, \lambda\right)
$$

- Define auxiliary variable δ :

$$
\delta_{t}(i)=\max _{q} P\left(q_{1}, q_{2}, \ldots, q_{t}=i, o_{1}, o_{2}, . . o_{t} \mid \lambda\right)
$$

$\delta_{t}(i)$ - the probability of the most probable path ending in state $\mathrm{q}_{\mathrm{t}}=\mathrm{i}$

Initialization

- Consider the case in class where we have a start state where 0 characters were observed.
- $F_{0}(0)=1$ given we always start here
- $F_{k}(0)=0$ for all non-silent states

Algorithm: Forward algorithm

Initialisation $(i=0): \quad f_{0}(0)=1, f_{k}(0)=0$ for $k>0$.
Recursion $(i=1 \ldots L): \quad f_{l}(i)=e_{l}\left(x_{i}\right) \sum_{k} f_{k}(i-1) a_{k l}$.
Termination:

$$
P(x)=\sum_{k} f_{k}(L) a_{k 0} .
$$

Algorithm: Viterbi

Initialisation $(i=0): \quad v_{0}(0)=1, v_{k}(0)=0$ for $k>0$.
Recursion $(i=1 \ldots L): v_{l}(i)=e_{l}\left(x_{i}\right) \max _{k}\left(v_{k}(i-1) a_{k l}\right)$; $\operatorname{ptr}_{i}(l)=\operatorname{argmax}_{k}\left(v_{k}(i-1) a_{k l}\right)$.

Termination:

$$
\begin{aligned}
& P\left(x, \pi^{*}\right)=\max _{k}\left(v_{k}(L) a_{k 0}\right) ; \\
& \pi_{L}^{*}=\operatorname{argmax}_{k}\left(v_{k}(L) a_{k 0}\right) .
\end{aligned}
$$

Traceback $(i=L \ldots 1): \pi_{i-1}^{*}=\operatorname{ptr}_{i}\left(\pi_{i}^{*}\right)$.

The structure of the Forward algorithm is essentially the same as that of the Viterbi algorithm, except that a maximization operation is replaced by summation.

The occasionally dishonest casino - Viterbi algorithm

| Emissions: | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $-----------------------------1 / 6 ~$ | | | | | | |
| State F | $1 / 6$ | $1 / 6$ | $1 / 6$ | $1 / 6$ | $1 / 6$ | $1 / 6$ |
| State L | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.5 |

| Transitons: | 1 | 2 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| ------------------1 | | | |
| State 0 | 0.50 | 0.50 | 0.00 |
| State 1 | 0.94 | 0.05 | 0.01 |
| State 2 | 0.89 | 0.10 | 0.01 |

Algorithm: Viterbi
Initialisation $(i=0): \quad v_{0}(0)=1, v_{k}(0)=0$ for $k>0$.
$\operatorname{Recursion}(i=1 \ldots L): v_{l}(i)=e_{l}\left(x_{i}\right) \max _{k}\left(v_{k}(i-1) a_{k l}\right)$; $\operatorname{ptr}_{i}(l)=\operatorname{argmax}_{k}\left(v_{k}(i-1) a_{k l}\right)$.

Termination: $\quad P\left(x, \pi^{*}\right)=\max _{k}\left(v_{k}(L) a_{k 0}\right)$; $\pi_{L}^{*}=\operatorname{argmax}_{k}\left(v_{k}(L) a_{k 0}\right)$.

Traceback $(i=L \ldots 1): \pi_{i-1}^{*}=\operatorname{ptr}_{i}\left(\pi_{i}^{*}\right)$.

x_{i}	1	2	6	6	6	5	end
$e_{1}\left(x_{i}\right)$	0.1667	0.1667	0.1667	0.1677	0.1677	0.1677	
$e_{2}\left(x_{i}\right)$	0.1000	0.1000	0.5000	0.5000	0.5000	0.1000	

Observed sequence, hidden path and Viterbi path

Figure 3.5 The numbers show 300 rolls of a die as described in the example. Below is shown which die was actually used for that roll (F for fair and Lfor loaded). Under that the prediction by the Viterbi algorithm is shown.

