
Lecture 9

Intro to Hidden Markov Models
(decoding, basic learning)



Assumptions

• Markov assumption
– States depend on previous states

• Stationary assumption
– Transition probabilities are independent of 

time (�memoryless�)
• Output independence

– Observations are independent of previous 
observations



Review

• Structure
– Number of states Q1 .. QN
– M output symbols

• Parameters:
– Transition probability matrix aij
– Emission probabilities bi(a), which is the 

probability state i emits character a
– Initial distribution vector πi



Cases
Example Observations Hidden state

Football Plays Coach

Text Words Shakespeare
/
monkey

Casino Rolled numbers Fair/loaded

DNA ACGT Coding/not



In class (re)review

• Suppose in instead of a dishonest 
casino we used fair and loaded coins.

• Just like before the player shifts 
between fair and loaded states.

• How could we model this?
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Basic problems
• Evaluation

– What is the probability that the observations were 
generated by a given model?

• Decoding
– Given a model and a sequence of observations, 

what is the most likely state observations?
• Learning:

– Given a model and a sequence of observations, 
how should we modify the model parameters to 
maximize p{observe|model)



Forward algorithm



Decoding

• Text:  Shakespeare or Monkey?

• Case 1: 
– Fehwufhweuromeojulietpoisonjigjreijge

• Case 2:
– mmmmbananammmmmmmbananammm



Observed sequence, hidden path and Viterbi path

From Durbin



The structure of the 
Forward algorithm is 
essentially the same 
as that of the Viterbi 
algorithm, except that 
a maximization 
operation is replaced 
by summation.



Solutions
Problem Algorithm Complexity

Evaluation Forward/
Backward

O(TN2)

Decoding Viterbi O(TN2)

Learning Baum-Welch 
(EM)

O(TN2)

T is # timesteps  (or observations)     N = # states



Learning

• If state path is known and there are no hidden 
states, this is easy and involves:
– Counting how often each parameter is used
– Normalizing to get probabilities
– Then treating it just like Markov chain models

• Harder without knowing state paths
– Idea:  estimate counts by considering every path 

weighted by its probability



Parameter estimation 
for HMMs

• We generally need to estimate transition and 
emission probabilities aij and ek(b).

• We have in hand a set of training examples, 
that correspond to output from the HMM.

• Two potential strategies:
– Estimation when state sequence is known
– Estimation when paths are unknown



Estimation when state 
sequence is known

• Easier than estimation when paths unknown
• Maximum likelihood estimators are:

• Akl = number of transitions k to l in training data + rkl

• Ek(b) = number of emissions of b from k in training 
data + rk(b)

∑
=

'
'

l
kl

kl
kl

A
Aa

∑
=

'
)'(
)()(

b
k

k
k

bE
bEbe



Potential problems
• Maximum likelihood estimators are prone to 

overfitting
– For example, states never encountered

• For this reason, we introduce rkl and rk(b), 
which reflect prior biases

• Can be interpreted as parameters of a 
Bayesian Dirichlet prior.



Estimation when paths are unknown

• More complex than when paths are 
known

• Because we can�t use maximum 
likelihood estimators, we will use an 
iterative algorithm
– Baum-Welch



Baum-Welch Algorithm

• Aka the Forward-Backward algorithm

• Also an example of an expectation 
maximization (EM) algorithm

• Idea: hidden state path is the best that 
explains a training sequence



Overview

• More formally, Baum-Welch calculates 
Akl and Ek(b) as the expected number 
of times each transition or emission is 
used.

• This will use the same Forward and 
Backward probabilities as posterior 
decoding.
– Topic of discussion maybe next week



Drawbacks

• ML estimators
– Vulnerable to overfitting if not enough data
– Estimations can be undefined if never used 

in training set (so use of pseudocounts)
• Baum-Welch

– Many local maximums instead of global 
maximum can be found, depending on 
starting values of parameters

– This problem will be worse for large HMMs



Example from Durbin

1: 1/6
2: 1/6
3: 1/6
4: 1/6
5: 1/6
6: 1/6

1: 1/10
2: 1/10
3: 1/10
4: 1/10
5: 1/10
6: 1/2

1: 0.19
2: 0.19
3: 0.23
4: 0.08
5: 0.23
6: 0.06

1: 0.07
2: 0.10
3: 0.10
4: 0.17
5: 0.05
6: 0.52

Note transition probabilities are different from real ones
Partly a result of local minima, but its never possible to
Estimate parameters exactly



Other methods
• Durbin also discusses an alternative method 

called Viterbi training based on the Viterbi 
algorithm.

• Does not maximize the true likelihood as a 
function of model parameters, but rather finds 
the model from the most probable paths.

• For this reason it generally does worse than 
Baum-Welch, but it is widely used.


